6,949 research outputs found

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201

    A Simple Flood Forecasting Scheme Using Wireless Sensor Networks

    Full text link
    This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.Comment: 16 pages, 4 figures, published in International Journal Of Ad-Hoc, Sensor And Ubiquitous Computing, February 2012; V. seal et al, 'A Simple Flood Forecasting Scheme Using Wireless Sensor Networks', IJASUC, Feb.201

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    AGENT-BASED DISCRETE EVENT SIMULATION MODELING AND EVOLUTIONARY REAL-TIME DECISION MAKING FOR LARGE-SCALE SYSTEMS

    Get PDF
    Computer simulations are routines programmed to imitate detailed system operations. They are utilized to evaluate system performance and/or predict future behaviors under certain settings. In complex cases where system operations cannot be formulated explicitly by analytical models, simulations become the dominant mode of analysis as they can model systems without relying on unrealistic or limiting assumptions and represent actual systems more faithfully. Two main streams exist in current simulation research and practice: discrete event simulation and agent-based simulation. This dissertation facilitates the marriage of the two. By integrating the agent-based modeling concepts into the discrete event simulation framework, we can take advantage of and eliminate the disadvantages of both methods.Although simulation can represent complex systems realistically, it is a descriptive tool without the capability of making decisions. However, it can be complemented by incorporating optimization routines. The most challenging problem is that large-scale simulation models normally take a considerable amount of computer time to execute so that the number of solution evaluations needed by most optimization algorithms is not feasible within a reasonable time frame. This research develops a highly efficient evolutionary simulation-based decision making procedure which can be applied in real-time management situations. It basically divides the entire process time horizon into a series of small time intervals and operates simulation optimization algorithms for those small intervals separately and iteratively. This method improves computational tractability by decomposing long simulation runs; it also enhances system dynamics by incorporating changing information/data as the event unfolds. With respect to simulation optimization, this procedure solves efficient analytical models which can approximate the simulation and guide the search procedure to approach near optimality quickly.The methods of agent-based discrete event simulation modeling and evolutionary simulation-based decision making developed in this dissertation are implemented to solve a set of disaster response planning problems. This research also investigates a unique approach to validating low-probability, high-impact simulation systems based on a concrete example problem. The experimental results demonstrate the feasibility and effectiveness of our model compared to other existing systems

    Strategic Location and Dispatch Management of Assets in a Military Medical Evacuation Enterprise

    Get PDF
    This dissertation considers the importance of optimizing deployed military medical evacuation (MEDEVAC) systems and utilizes operations research techniques to develop models that allow military medical planners to analyze different strategies regarding the management of MEDEVAC assets in a deployed environment. For optimization models relating to selected subproblems of the MEDEVAC enterprise, the work herein leverages integer programming, multi-objective optimization, Markov decision processes, approximate dynamic programming, and machine learning, as appropriate, to identify relevant insights for aerial MEDEVAC operations
    corecore