68 research outputs found

    On Strong Centerpoints

    Full text link
    Let PP be a set of nn points in Rd\mathbb{R}^d and F\mathcal{F} be a family of geometric objects. We call a point xPx \in P a strong centerpoint of PP w.r.t F\mathcal{F} if xx is contained in all FFF \in \mathcal{F} that contains more than cncn points from PP, where cc is a fixed constant. A strong centerpoint does not exist even when F\mathcal{F} is the family of halfspaces in the plane. We prove the existence of strong centerpoints with exact constants for convex polytopes defined by a fixed set of orientations. We also prove the existence of strong centerpoints for abstract set systems with bounded intersection

    Approximating Tverberg Points in Linear Time for Any Fixed Dimension

    Full text link
    Let P be a d-dimensional n-point set. A Tverberg-partition of P is a partition of P into r sets P_1, ..., P_r such that the convex hulls conv(P_1), ..., conv(P_r) have non-empty intersection. A point in the intersection of the conv(P_i)'s is called a Tverberg point of depth r for P. A classic result by Tverberg implies that there always exists a Tverberg partition of size n/(d+1), but it is not known how to find such a partition in polynomial time. Therefore, approximate solutions are of interest. We describe a deterministic algorithm that finds a Tverberg partition of size n/4(d+1)^3 in time d^{O(log d)} n. This means that for every fixed dimension we can compute an approximate Tverberg point (and hence also an approximate centerpoint) in linear time. Our algorithm is obtained by combining a novel lifting approach with a recent result by Miller and Sheehy (2010).Comment: 14 pages, 2 figures. A preliminary version appeared in SoCG 2012. This version removes an incorrect example at the end of Section 3.

    Small Strong Epsilon Nets

    Full text link
    Let P be a set of n points in Rd\mathbb{R}^d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dnd+1dn\over d+1 points of P. We call a point x a strong centerpoint for a family of objects C\mathcal{C} if xPx \in P is contained in every object CCC \in \mathcal{C} that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R2\mathbb{R}^2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd\mathbb{R}^d and give exact bounds. We then extend this to small strong ϵ\epsilon-nets in the plane and prove upper and lower bounds for ϵiS\epsilon_i^\mathcal{S} where S\mathcal{S} is the family of axis-parallel rectangles, halfspaces and disks. Here ϵiS\epsilon_i^\mathcal{S} represents the smallest real number in [0,1][0,1] such that there exists an ϵiS\epsilon_i^\mathcal{S}-net of size i with respect to S\mathcal{S}.Comment: 19 pages, 12 figure

    Journey to the Center of the Point Set

    Get PDF
    We revisit an algorithm of Clarkson et al. [K. L. Clarkson et al., 1996], that computes (roughly) a 1/(4d^2)-centerpoint in O~(d^9) time, for a point set in R^d, where O~ hides polylogarithmic terms. We present an improved algorithm that computes (roughly) a 1/d^2-centerpoint with running time O~(d^7). While the improvements are (arguably) mild, it is the first progress on this well known problem in over twenty years. The new algorithm is simpler, and the running time bound follows by a simple random walk argument, which we believe to be of independent interest. We also present several new applications of the improved centerpoint algorithm

    Compact finite volume methods for the diffusion equation

    Get PDF
    An approach to treating initial-boundary value problems by finite volume methods is described, in which the parallel between differential and difference arguments is closely maintained. By using intrinsic geometrical properties of the volume elements, it is possible to describe discrete versions of the div, curl, and grad operators which lead, using summation-by-parts techniques, to familiar energy equations as well as the div curl = 0 and curl grad = 0 identities. For the diffusion equation, these operators describe compact schemes whose convergence is assured by the energy equations and which yield both the potential and the flux vector with second order accuracy. A simplified potential form is especially useful for obtaining numerical results by multigrid and alternating direction implicit (ADI) methods. The treatment of general curvilinear coordinates is shown to result from a specialization of these general results
    corecore