14 research outputs found

    Approximate Well-supported Nash Equilibria below Two-thirds

    Get PDF
    In an epsilon-Nash equilibrium, a player can gain at most epsilon by changing his behaviour. Recent work has addressed the question of how best to compute epsilon-Nash equilibria, and for what values of epsilon a polynomial-time algorithm exists. An epsilon-well-supported Nash equilibrium (epsilon-WSNE) has the additional requirement that any strategy that is used with non-zero probability by a player must have payoff at most epsilon less than the best response. A recent algorithm of Kontogiannis and Spirakis shows how to compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we introduce a new technique that leads to an improvement to the worst-case approximation guarantee

    Large Supports are required for Well-Supported Nash Equilibria

    Get PDF
    We prove that for any constant kk and any ϵ<1\epsilon<1, there exist bimatrix win-lose games for which every ϵ\epsilon-WSNE requires supports of cardinality greater than kk. To do this, we provide a graph-theoretic characterization of win-lose games that possess ϵ\epsilon-WSNE with constant cardinality supports. We then apply a result in additive number theory of Haight to construct win-lose games that do not satisfy the requirements of the characterization. These constructions disprove graph theoretic conjectures of Daskalakis, Mehta and Papadimitriou, and Myers

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

    Full text link
    While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×20002000 \times 2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria

    Computing Approximate Nash Equilibria in Polymatrix Games

    Full text link
    In an ϵ\epsilon-Nash equilibrium, a player can gain at most ϵ\epsilon by unilaterally changing his behaviour. For two-player (bimatrix) games with payoffs in [0,1][0,1], the best-knownϵ\epsilon achievable in polynomial time is 0.3393. In general, for nn-player games an ϵ\epsilon-Nash equilibrium can be computed in polynomial time for an ϵ\epsilon that is an increasing function of nn but does not depend on the number of strategies of the players. For three-player and four-player games the corresponding values of ϵ\epsilon are 0.6022 and 0.7153, respectively. Polymatrix games are a restriction of general nn-player games where a player's payoff is the sum of payoffs from a number of bimatrix games. There exists a very small but constant ϵ\epsilon such that computing an ϵ\epsilon-Nash equilibrium of a polymatrix game is \PPAD-hard. Our main result is that a (0.5+δ)(0.5+\delta)-Nash equilibrium of an nn-player polymatrix game can be computed in time polynomial in the input size and 1δ\frac{1}{\delta}. Inspired by the algorithm of Tsaknakis and Spirakis, our algorithm uses gradient descent on the maximum regret of the players. We also show that this algorithm can be applied to efficiently find a (0.5+δ)(0.5+\delta)-Nash equilibrium in a two-player Bayesian game

    Distributed Methods for Computing Approximate Equilibria

    Get PDF
    We present a new, distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then compute approximate Nash equilibria using only limited communication between the players. Our method has several applications for improved bounds for efficient computations of approximate Nash equilibria in bimatrix games. First, it yields a best polynomial-time algorithm for computing \emph{approximate well-supported Nash equilibria (WSNE)}, which guarantees to find a 0.6528-WSNE in polynomial time. Furthermore, since our algorithm solves the two LPs separately, it can be used to improve upon the best known algorithms in the limited communication setting: the algorithm can be implemented to obtain a randomized expected-polynomial-time algorithm that uses poly-logarithmic communication and finds a 0.6528-WSNE. The algorithm can also be carried out to beat the best known bound in the query complexity setting, requiring O(nlogn)O(n \log n) payoff queries to compute a 0.6528-WSNE. Finally, our approach can also be adapted to provide the best known communication efficient algorithm for computing \emph{approximate Nash equilibria}: it uses poly-logarithmic communication to find a 0.382-approximate Nash equilibrium

    Approximate well-supported Nash equilibria below two-thirds

    No full text
    In an ε-Nash equilibrium, a player can gain at most ε by changing his behaviour. Recent work has addressed the question of how best to compute ε-Nash equilibria, and for what values of ε a polynomial-time algorithm exists. An ε-well-supported Nash equilibrium (ε-WSNE) has the additional requirement that any strategy that is used with non-zero probability by a player must have payoff at most ε less than a best response. A recent algorithm of Kontogiannis and Spirakis shows how to compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we introduce a new technique that leads to an improvement to the worst-case approximation guarantee

    Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries

    Get PDF
    We study the deterministic and randomized query complexity of finding approximate equilibria in a k × k bimatrix game. We show that the deterministic query complexity of finding an ϵ-Nash equilibrium when ϵ < ½ is Ω(k2), even in zero-one constant-sum games. In combination with previous results [Fearnley et al. 2013], this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a (3-√5/2 + ϵ)-Nash equilibrium using O(k.log k/ϵ2) payoff queries, which shows that the ½ barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an ϵ-WSNE of a zero-sum bimatrix game using O(k.log k/ϵ4) payoff queries, and we then use this to obtain a randomized algorithm for finding a (⅔ + ϵ)-WSNE in a general bimatrix game using O(k.log k/ϵ4) payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require Ω(k2) payoff queries in order to find an ϵ-Nash equilibrium with ϵ < 1/4k, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria

    Computing Constrained Approximate Equilibria in Polymatrix Games

    Get PDF
    This paper is about computing constrained approximate Nash equilibria in polymatrix games, which are succinctly represented many-player games defined by an interaction graph between the players. In a recent breakthrough, Rubinstein showed that there exists a small constant ϵ\epsilon, such that it is PPAD-complete to find an (unconstrained) ϵ\epsilon-Nash equilibrium of a polymatrix game. In the first part of the paper, we show that is NP-hard to decide if a polymatrix game has a constrained approximate equilibrium for 9 natural constraints and any non-trivial approximation guarantee. These results hold even for planar bipartite polymatrix games with degree 3 and at most 7 strategies per player, and all non-trivial approximation guarantees. These results stand in contrast to similar results for bimatrix games, which obviously need a non-constant number of actions, and which rely on stronger complexity-theoretic conjectures such as the exponential time hypothesis. In the second part, we provide a deterministic QPTAS for interaction graphs with bounded treewidth and with logarithmically many actions per player that can compute constrained approximate equilibria for a wide family of constraints that cover many of the constraints dealt with in the first part
    corecore