210 research outputs found

    How to Walk Your Dog in the Mountains with No Magic Leash

    Full text link
    We describe a O(logn)O(\log n )-approximation algorithm for computing the homotopic \Frechet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a O(logn)O(\log n)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic \Frechet distance, or the minimum height of a homotopy, is in NP

    Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics

    Full text link
    Using the geodesic distance on the nn-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1\mathbb{R}^{n+1}, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in nn-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the nn-sphere is isometric to the standard nn-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the nn-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics

    Shortest Path Problems on a Polyhedral Surface

    Get PDF
    We develop algorithms to compute shortest path edge sequences, Voronoi diagrams, the Fréchet distance, and the diameter for a polyhedral surface
    corecore