21,381 research outputs found

    Distributed Selfish Coaching

    Full text link
    Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node's resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking applications -- including web caching, CDNs, and P2P -- this paper extends our previous work on the on-line version of the problem, which was conducted under a game-theoretic framework, and limited to object replication. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that on-line cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. To appear in a substantial manner, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the "outlier" characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes. Our framework utilizes a simple control-theoretic approach to dynamically parameterize the cache management scheme. We show performance evaluation results that quantify the benefits from instantiating such a framework, which could be substantial under skewed demand profiles.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067); EU IST (CASCADAS and E-NEXT); Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230

    Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning

    Get PDF
    Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources

    A unified approach to the performance analysis of caching systems

    Get PDF
    We propose a unified methodology to analyse the performance of caches (both isolated and interconnected), by extending and generalizing a decoupling technique originally known as Che's approximation, which provides very accurate results at low computational cost. We consider several caching policies, taking into account the effects of temporal locality. In the case of interconnected caches, our approach allows us to do better than the Poisson approximation commonly adopted in prior work. Our results, validated against simulations and trace-driven experiments, provide interesting insights into the performance of caching systems.Comment: in ACM TOMPECS 20016. Preliminary version published at IEEE Infocom 201

    Allocation Algorithms for Networks with Scarce Resources

    Get PDF
    Many fundamental algorithmic techniques have roots in applications to computer networks. We consider several problems that crop up in wireless ad hoc networks, sensor networks, P2P networks, and cluster networks. The common challenge here is to deal with certain bottleneck resources that are crucial for performance of the underlying system. Broadly, we deal with the following issues. Data: The primary goal in resource replication problems is to replicate data objects on server nodes with limited storage capacities, so that the latency of client nodes needing these objects is minimized. Previous work in this area is heuristic and without guarantees. We develop tight (or nearly) approximation algorithms for several problems including basic resource replication - where clients need all objects and server can store at most one object, subset resource replication - where clients require different subsets of objects and servers have limited non-uniform capacity, and related variants. Computational resources: To facilitate packing of jobs needing disparate amounts of computational resources in cluster networks, an important auxiliary problem to solve is that of container selection. The idea is to select a limited number of ``containers'' that represent a given pool of jobs while minimizing ``wastage'' of resources. Subsequently, containers representing jobs can be packed instead of jobs themselves. We study this problem in two settings: continuous - where there are no additional restrictions on chosen containers, and discrete - where we must choose containers from a given set. We show that the continuous variant is NP-hard and admits a polynomial time approximation scheme. Contrastingly, the discrete variant is shown to be NP-hard to approximate. Therefore, we seek bi-approximation algorithms for this case. Energy resources: Wireless ad hoc networks contain nodes with limited battery life and it is crucial to design energy efficient algorithms. We obtain tight approximation (up to constant factors) guarantees for partial and budgeted versions of the connected dominating set problem, which is regarded as a good model for a virtual backbone of a wireless ad hoc network. Further, we will discuss approximation algorithms for some problems involving target monitoring in sensor networks and message propagation in radio networks. We will end with a discussion on future work

    DCCast: Efficient Point to Multipoint Transfers Across Datacenters

    Full text link
    Using multiple datacenters allows for higher availability, load balancing and reduced latency to customers of cloud services. To distribute multiple copies of data, cloud providers depend on inter-datacenter WANs that ought to be used efficiently considering their limited capacity and the ever-increasing data demands. In this paper, we focus on applications that transfer objects from one datacenter to several datacenters over dedicated inter-datacenter networks. We present DCCast, a centralized Point to Multi-Point (P2MP) algorithm that uses forwarding trees to efficiently deliver an object from a source datacenter to required destination datacenters. With low computational overhead, DCCast selects forwarding trees that minimize bandwidth usage and balance load across all links. With simulation experiments on Google's GScale network, we show that DCCast can reduce total bandwidth usage and tail Transfer Completion Times (TCT) by up to 50%50\% compared to delivering the same objects via independent point-to-point (P2P) transfers.Comment: 9th USENIX Workshop on Hot Topics in Cloud Computing, https://www.usenix.org/conference/hotcloud17/program/presentation/noormohammadpou
    • …
    corecore