6,982 research outputs found

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness

    Timed Automata Semantics for Analyzing Creol

    Full text link
    We give a real-time semantics for the concurrent, object-oriented modeling language Creol, by mapping Creol processes to a network of timed automata. We can use our semantics to verify real time properties of Creol objects, in particular to see whether processes can be scheduled correctly and meet their end-to-end deadlines. Real-time Creol can be useful for analyzing, for instance, abstract models of multi-core embedded systems. We show how analysis can be done in Uppaal.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Application of High-precision Timing Systems to Distributed Survey Systems

    Get PDF
    In any hydrographic survey system that consists of more than one computer, one of the most difficult integration problems is to ensure that all components maintain a coherent sense of time. Since virtually all modern survey systems are of this type, timekeeping and synchronized timestamping of data as it is created is of significant concern. This paper describes a method for resolving this problem based on the IEEE 1588 Precise Time Protocol (PTP) implemented by hardware devices, layered with some custom software called the Software Grandmaster (SWGM) algorithm. This combination of hardware and software maintains a coherent sense of time between multiple ethernet-connected computers, on the order of 100 ns (rms) in the best case, of the timebase established by the local GPS-receiver clock. We illustrate the performance of this techniques in a practical survey system using a Reson 7P sonar processor connected to a Reson 7125 Multibeam Echosounder (MBES), integrated with an Applanix POS/MV 320 V4 and a conventional data capture computer. Using the timing capabilities of the PTP hardware implementations, we show that the timepieces achieve mean (hardware based) synchronization and timestamping within 100-150 ns (rms), and that the data created at the Reson 7P without hardware timestamps has a latency variability of 28 µs (rms) due to software constraints within the capture system. This compares to 288 ms (rms) using Reson’s standard hybrid hardware/software solution, and 13.6 ms (rms) using a conventional single-oscillator timestamping model

    General purpose simulator system study

    Get PDF
    Modifications to computerized simulator system for space shuttle and space station application

    Symbolic Analysis of GSMP Models With One Stateful Clock

    Get PDF
    We consider the problem of verifying reachability properties of stochastic real-time systems modeled as generalized semi-Markov processes (GSMPs). The standard simulation-based techniques for GSMPs are not adequate for solving verification problems, and existing symbolic techniques either require memoryless distributions for firing times, or approximate the problem using discrete time or bounded horizon. In this paper, we present a symbolic solution for the case where firing times are random variables over a rich class of distributions, but only one event is allowed to retain its firing time when a discrete change occurs. The solution allows us to compute the probability that such a GSMP satisfies a property of the form “can the system reach a target, while staying within a set of safe states”. We report on illustrative examples and their analysis using our procedure

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156
    • …
    corecore