6,747 research outputs found

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    High-dimensional approximate nearest neighbor: k-d Generalized Randomized Forests

    Get PDF
    We propose a new data-structure, the generalized randomized kd forest, or kgeraf, for approximate nearest neighbor searching in high dimensions. In particular, we introduce new randomization techniques to specify a set of independently constructed trees where search is performed simultaneously, hence increasing accuracy. We omit backtracking, and we optimize distance computations, thus accelerating queries. We release public domain software geraf and we compare it to existing implementations of state-of-the-art methods including BBD-trees, Locality Sensitive Hashing, randomized kd forests, and product quantization. Experimental results indicate that our method would be the method of choice in dimensions around 1,000, and probably up to 10,000, and pointsets of cardinality up to a few hundred thousands or even one million; this range of inputs is encountered in many critical applications today. For instance, we handle a real dataset of 10610^6 images represented in 960 dimensions with a query time of less than 11sec on average and 90\% responses being true nearest neighbors

    Approximate Nearest Neighbor Search for Low Dimensional Queries

    Full text link
    We study the Approximate Nearest Neighbor problem for metric spaces where the query points are constrained to lie on a subspace of low doubling dimension, while the data is high-dimensional. We show that this problem can be solved efficiently despite the high dimensionality of the data.Comment: 25 page

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201
    • …
    corecore