715 research outputs found

    A Direct Reduction from k-Player to 2-Player Approximate Nash Equilibrium

    Full text link
    We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.Comment: 21 page

    Approximate Nash Equilibria via Sampling

    Full text link
    We prove that in a normal form n-player game with m actions for each player, there exists an approximate Nash equilibrium where each player randomizes uniformly among a set of O(log(m) + log(n)) pure strategies. This result induces an NloglogNN^{\log \log N} algorithm for computing an approximate Nash equilibrium in games where the number of actions is polynomial in the number of players (m=poly(n)), where N=nmnN=nm^n is the size of the game (the input size). In addition, we establish an inverse connection between the entropy of Nash equilibria in the game, and the time it takes to find such an approximate Nash equilibrium using the random sampling algorithm

    Computational Complexity of Approximate Nash Equilibrium in Large Games

    Full text link
    We prove that finding an epsilon-Nash equilibrium in a succinctly representable game with many players is PPAD-hard for constant epsilon. Our proof uses succinct games, i.e. games whose payoff function is represented by a circuit. Our techniques build on a recent query complexity lower bound by Babichenko.Comment: New version includes an addendum about subsequent work on the open problems propose

    Relative Performance Evaluation between Multitask Agents

    Get PDF
    We investigate the moral hazard problem in which the principal delegates multiple tasks to two agents. She imperfectly monitors the action choices by observing the public signals that are correlated through the macro shock and that satisfy conditional independence. When the number of tasks is sufficiently high, relative performance evaluation functions effectively for unique implementation, where the desirable action choices are supported by an approximate Nash equilibrium, and any approximate Nash equilibrium virtually induces the first-best allocation. Thus, this is an extremely effective method through which the principal divides the workers into two groups and makes them compete with each other.

    On the Complexity of Nash Equilibria in Anonymous Games

    Full text link
    We show that the problem of finding an {\epsilon}-approximate Nash equilibrium in an anonymous game with seven pure strategies is complete in PPAD, when the approximation parameter {\epsilon} is exponentially small in the number of players.Comment: full versio

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded
    corecore