research

Approximate Nash Equilibria via Sampling

Abstract

We prove that in a normal form n-player game with m actions for each player, there exists an approximate Nash equilibrium where each player randomizes uniformly among a set of O(log(m) + log(n)) pure strategies. This result induces an NloglogNN^{\log \log N} algorithm for computing an approximate Nash equilibrium in games where the number of actions is polynomial in the number of players (m=poly(n)), where N=nmnN=nm^n is the size of the game (the input size). In addition, we establish an inverse connection between the entropy of Nash equilibria in the game, and the time it takes to find such an approximate Nash equilibrium using the random sampling algorithm

    Similar works

    Full text

    thumbnail-image

    Available Versions