6,812 research outputs found

    Approximate Equilibrium and Incentivizing Social Coordination

    Full text link
    We study techniques to incentivize self-interested agents to form socially desirable solutions in scenarios where they benefit from mutual coordination. Towards this end, we consider coordination games where agents have different intrinsic preferences but they stand to gain if others choose the same strategy as them. For non-trivial versions of our game, stable solutions like Nash Equilibrium may not exist, or may be socially inefficient even when they do exist. This motivates us to focus on designing efficient algorithms to compute (almost) stable solutions like Approximate Equilibrium that can be realized if agents are provided some additional incentives. Our results apply in many settings like adoption of new products, project selection, and group formation, where a central authority can direct agents towards a strategy but agents may defect if they have better alternatives. We show that for any given instance, we can either compute a high quality approximate equilibrium or a near-optimal solution that can be stabilized by providing small payments to some players. We then generalize our model to encompass situations where player relationships may exhibit complementarities and present an algorithm to compute an Approximate Equilibrium whose stability factor is linear in the degree of complementarity. Our results imply that a little influence is necessary in order to ensure that selfish players coordinate and form socially efficient solutions.Comment: A preliminary version of this work will appear in AAAI-14: Twenty-Eighth Conference on Artificial Intelligenc

    Evolution and Walrasian Behavior in Market Games

    Get PDF
    We revisit the question of price formation in general equilibrium theory. We explore whether evolutionary forces lead to Walrasian equilibrium in the context of a market game, introduced by Shubik (1972). Market games have Pareto inferior (strict) Nash equilibria, in which some, and possibly all, markets are closed. We introduce a strong version of evolutionary stable strategies (SESS) for finite populations. Our concept requires stability against multiple, simultaneous mutations. We show that the introduction of a small number of ``trading mutants'' is sufficient for Pareto improving trade to be generated. Provided that agents lack market power, Nash equilibria corresponding to approximate Walrasian equilibria constitute the only approximate SESS.

    Strong Nash Equilibria in Games with the Lexicographical Improvement Property

    Get PDF
    We introduce a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the Lexicographical Improvement Property (LIP) and show that it implies the existence of a generalized strong ordinal potential function. We use this characterization to derive existence, efficiency and fairness properties of strong Nash equilibria. We then study a class of games that generalizes congestion games with bottleneck objectives that we call bottleneck congestion games. We show that these games possess the LIP and thus the above mentioned properties. For bottleneck congestion games in networks, we identify cases in which the potential function associated with the LIP leads to polynomial time algorithms computing a strong Nash equilibrium. Finally, we investigate the LIP for infinite games. We show that the LIP does not imply the existence of a generalized strong ordinal potential, thus, the existence of SNE does not follow. Assuming that the function associated with the LIP is continuous, however, we prove existence of SNE. As a consequence, we prove that bottleneck congestion games with infinite strategy spaces and continuous cost functions possess a strong Nash equilibrium
    corecore