
Evolution and Walrasian Behavior in

Market Games

Alexander Matros
University of Pittsburgh

Pittsburgh, PA 15260

alm75@pitt.edu

Ted Temzelides
University of Pittsburgh

Pittsburgh, PA 15260

tedt@pitt.edu

September 17, 2004

Abstract

We revisit the question of price formation in general equilibrium the-
ory. We explore whether evolutionary forces lead to Walrasian equilibrium
in the context of a market game, introduced by Shubik (1972). Market
games have Pareto inferior (strict) Nash equilibria, in which some, and
possibly all, markets are closed. We introduce a strong version of evolu-
tionary stable strategies (SESS) for finite populations. Our concept re-
quires stability against multiple, simultaneous mutations. We show that
the introduction of a small number of “trading mutants” is sufficient for
Pareto improving trade to be generated. Provided that agents lack market
power, Nash equilibria corresponding to approximate Walrasian equilibria
constitute the only approximate SESS.
Keywords: Walrasian Equilibrium, Market Games, Evolutionary Stabil-
ity
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1 Introduction

Walrasian equilibrium is a cornerstone of modern economics. It is, therefore,

not surprising that the question of Walrasian price formation has been the topic

of extensive study in general equilibrium theory. The tâtonnement process has

been used extensively in this context.1 The study of tâtonnement, however, has

produced largely negative results, and this has led some researchers to conclude

that decentralized information about prices alone is not sufficient to bring the

economy to the Walrasian equilibrium. In addition, and perhaps more impor-

tantly, the tâtonnement has been criticized for lacking micro foundations since

the price adjustment process is not the outcome of the individual optimization.

Even if we put the traditional stability question aside, Walrasian equilibrium

may be challenged on the basis of complexity considerations. Can “unsophis-

ticated” agents learn to behave in such a way that an outside observer of the

economy will see a Walrasian equilibrium allocation? Evolutionary game theory

seems to provide an appropriate framework to formulate this question. After all,

competitive outcomes are often justified by appealing to the natural selection

of behavior that is more “fit.”2 In this paper we explore whether evolutionary

forces can lead to Walrasian equilibrium in the context of a market game, in-

troduced by Shubik (1972).3 Our story is not explicitly dynamic. Rather, we

show that any non-Walrasian outcome can be disturbed by the introduction of

a small number of “mutants,” who can become better off in relative terms by

choosing different trading patterns.

Market games are one of the non-cooperative structures that give rise to

competitive outcomes when agents lack market power. Thus, it has served

as a non-cooperative foundation for the Walrasian equilibrium. Even in large

1See Arrow and Hurwicz (1959) for a classic reference.
2See Alchian (1950) for one of the first attempts to formalize this argument.
3There is extensive literature on market games. Standard references include Shapley

(1977), Shapley and Shubik (1977), Dubey and Shubik (1977), and Mas-Colell (1982).
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economies, however, in addition to approximately Walrasian outcomes, market

games obtain other, Pareto inferior (strict) Nash equilibria, in which at least

some, and possibly all, markets are closed due to a coordination failure. Our

study concerns a pure exchange economy with a finite number of agents and a

finite number of goods. We study the limit case, as formalized by Postlewaite

and Schmeidler (PS, 1978), where the number of agents is large. We introduce

a strong version of evolutionary stable strategies (SESS) for asymmetric, finite

populations. Roughly speaking, SESS requires stability against all simultaneous

mutations by at most one agent per population.

We demonstrate that (partial) autarky outcomes are not SESS in an ap-

proximate sense that we make precise. A small number of suitable mutations

is sufficient for Pareto improving trade to be generated and for a market to

open. Thus, evolutionary forces provide an avenue through which the economy

can escape situations in which some markets are closed due to a coordination

failure. We demonstrate that in a replicated version of the game, as agents’

market power becomes insignificant, Nash equilibria that support approximate

Walrasian equilibria of the underlying economy are the only approximate SESS.4

We can summarize the intuition behind our main result as follows. A Pareto

inferior situation, in which some markets are closed, cannot be disturbed by a

single mutant. This is because a single agent cannot create beneficial trade.

On the other hand, the introduction of one trading mutant on each side of the

market is sufficient to open a market, thus leading the economy to a Pareto

superior trading regime. All other states that involve trade, but not individual

optimization at the given prices, can be disturbed by the introduction of a single

mutant who chooses the best basket at the given prices. An important ingredi-

ent in our analysis is that the number of agents in the replicated economy under

4Our results are related to Dubey and Shubik (1978), who introduce an outside agency that
ensures that arbitrarily small amounts of bids and asks are present in all markets. Our argu-
ment, however, does not rely on the existence of this agency. In addition, we impose minimal
rationality requirements on our agents, and we explicitly consider all non-Nash outcomes.
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study is much greater than the number of possible mutants. Consequently, while

mutations can change certain agents’ baskets, they only have a negligible effect

on prices. As a result, no mutations can lead to improvements, in an approxi-

mate sense, if the economy is at a Walrasian equilibrium. Thus, consistent with

the traditionally held view, our findings provide support for the popular belief

that evolutionary forces lead to competitive outcomes, but only when individual

agents are small compared to the market.5

The paper proceeds as follows. Section 2 reviews some concepts from evolu-

tionary game theory, introduces our solution concept and presents an example.

In Section 3, we apply the solution concept to the market game and discuss the

main result. A brief conclusion follows.

2 The Solution Concept

We start by stating some related existing definitions of the evolutionary stability.

First, consider a population consisting of a continuum of agents. We assume

that N agents are selected from this population to play a normal-form game

Γ = (N,X, u). The standard definition of an Evolutionary Stable Strategy

(ESS) for two-player symmetric games is as follows (see Weibull, 1995):

Definition 1 x ∈ ∆ is an ESS if, for every strategy y 6= x, there exists εy > 0
such that

u (x, (1− ε)x+ εy) > u (y, (1− ε)x+ εy)

for all ε ∈ (0, εy), where ∆ is a set of mixed strategies.

Next, consider a finite population of size N . The definition of ESS for N -

player symmetric games is as follows (see Schaffer, 1988, 1989):

5This is in contrast to some recent papers in the literature, notably Vega-Redondo (1997).
See our conclusion section for further discussion.

3



Definition 2 x ∈ X is an ESS if, for any strategy y 6= x,

u (x | y, x, x, ...) ≥ u (y | x, x, ...) .

An equivalent definition is that x is an ESS if it solves the following maxi-

mization problem:

max
y∈X

u (y | x, x, ...)− u (x | y, x, x, ...) . (1)

We amend Schaffer’s (1988) definition in two ways. First, we extend the

definition of an ESS from one finite population to multiple finite populations.

Second, we build a strong version of the evolutionary stability, one that requires

stability against a simultaneous invasion of multiple mutants from different pop-

ulations.

We will first present the concept in the context of an example. In the next

section, we will apply it to a market game. Suppose that there are K finite

populations. Each population, i, contains ni ≥ 2 agents. We assume that all
agents from population i play anN -player game, Γ, whereN = n1+...+nK . Γ is

assumed to have the following symmetry property. All players from population

i have the same set of strategies, Xi, and the same payoff function, ui. In other

words, if two players (from the same population) play the same strategy, they

will obtain the same payoffs. Hence, we can write

Γ =
¡{n1, ..., nK} ;×n1X1 × ...×nK XK ;

¡
u1, ..., u1; ...;uK , ..., uK

¢¢
. (2)

Suppose that one player from population i plays strategy yi, while all other

players from population i play strategy xi. If at most one player in each pop-

ulation plays a strategy which is different from the one chosen by every other

player in the population, the payoff function of a player from population i can

be written as:

ui
³
(yi, xi); (y1, x1); ...; (yK , xK)

´
, (3)
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where
³
yi, xi

´
denotes the case where one player from population i plays strat-

egy yi, while all other players from population i play strategy xi.

We are now ready to define our main concept.

Definition 3 x =
³
x1, ..., xK

´
∈ X is a Strong ESS (SESS) if, for any

strategy yi 6= xi,

ui
³
xi, xi; γ1, ..., γK

´
≥ ui

³
yi, xi; γ1, ..., γK

´
, for all i, (4)

and for all γj, where γj =
³
xj , xj

´
, or γj =

³
yj , xj

´
.

Condition (4) is equivalent to saying that

ui
³
yi, xi; γ1, ..., γK

´
− ui

³
xi, xi; γ1, ..., γK

´
, (5)

as a function of yi, reaches its maximum value of zero when yi = xi, for all γj.

That is, xi is a solution to the following maximization problem:

max
yi

h
ui
³
yi, xi; γ1, ..., γK

´
− ui

³
xi, xi; γ1, ..., γK

´i
, (6)

for all γj , where γj =
³
xj , xj

´
, or γj =

³
yj , xj

´
, j 6= i.

A notable feature of the SESS is that it requires stability against up to K

simultaneous mutations (one per population). Clearly, this is a stronger concept

than Schaffer’s ESS. Thus, SESS will not exist in general either. An important

feature of our concept is that it can be applied to asymmetric games. Another

difference from standard evolutionary models is that instead of a continuum,

we shall assume a finite number of agents. Below, we give an example of a

4-player coordination game in which SESS uniquely selects the Pareto efficient

Nash equilibrium even though there is another ESS.

Example 1. Suppose that there are two populations (I and II), each consisting

of two players. Each player has two available actions (a and b). Let θI(II) stand
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for the number of a-players in population I(II). Payoffs are defined as follows.

uI(a, θI , θII) uI(b, θI , θII)

uI(a, 1, 0) = 0 uI(b, 0, 0) = 2
uI(a, 2, 0) = 0 uI(b, 1, 0) = 2
uI(a, 1, 1) = 3 uI(b, 0, 1) = 1
uI(a, 2, 1) = 3 uI(b, 1, 1) = 1
uI(a, 1, 2) = 4 uI(b, 0, 2) = 0
uI(a, 2, 2) = 4 uI(b, 1, 2) = 0

uII(a, θI , θII) uII(b, θI , θII)

uII(a, 0, 1) = 0 uII(b, 0, 0) = 2
uII(a, 0, 2) = 0 uII(b, 0, 1) = 2
uII(a, 1, 1) = 3 uII(b, 1, 0) = 1
uII(a, 1, 2) = 3 uII(b, 1, 1) = 1
uII(a, 2, 1) = 4 uII(b, 2, 0) = 0
uII(a, 2, 2) = 4 uII(b, 2, 1) = 0

(7)

For example, uI(a, 1, 0) = 0 means that the payoff of the player in population I

who plays action a, when all other players (one player in population I and two

players in population II) play action b, is zero. Clearly, this is a coordination

game. It has two symmetric strict Nash equilibria in which all agents play a

and all play b, respectively. The a-equilibrium is an SESS. Notice, however,

that the b-equilibrium is not an SESS since one mutation per population (type)

to playing strategy a will result in a payoff of 3 for each of the two mutants

(instead of 1 for the b-players).

Later, we shall need to make use of the following approximate notion of an

SESS.

Definition 4 x ∈ X is an ²-SESS if, for any yi 6= xi,

ui
³
xi, xi; γ1, ..., γK

´
≥ ui

³
yi, xi; γ1, ..., γK

´
− ², for all i, (8)

and for all γj, where γj =
³
xj , xj

´
, or γj =

³
yj , xj

´
, j 6= i.

Thus, an ²-SESS requires that no mutant can be better off by more than

a small amount, ². In the next section we motivate and use both the SESS

and the ²-SESS concepts in the context of our main topic of study, a strategic

market game.
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3 The Market Game

3.1 Preliminaries

We consider a pure exchange economy with L consumption goods. The economy

is described by E = I, wi, ui®
i∈I , where I is a finite set of agents belonging to

K different populations (or types); ui : RL+ → R is the utility function of agent

i, and wi ∈ RL+ is the endowment vector of agent i. We assume that ui is

continuous, strictly increasing in all its variables, and strictly quasi-concave

on RL+. Agents participate in an n-player market game related to the one in

Shapley and Shubik (1977). In what follows, we largely rely on PS in defining

the market game corresponding to E.6

Let Xi = {xi = (bi, qi) ∈ RL+ × RL+ : qi ≤ wi} be the set of strategies of
player i. Here, bi denotes the vector of bids or “goods requested” by agent

i, measured in abstract units of account, while qi denotes the vector of goods

offered by agent i. Individual agents have to satisfy a balance or bankruptcy

condition, which requires that the total value of an agent’s bid has to be less

than, or equal to, the total “receipts” from their goods sales. More precisely,

the individual balance condition is given byX
l∈L

bil ≤
X
l∈L

qilP
j∈I q

j
l

X
j∈I

bjl . (9)

One issue is what happens to agents who violate the balance condition.

This is particularly important in our case for two reasons. First, unlike PS, we

explicitly consider non-Nash states in which this constraint might be violated.

Second, since agents in our model are concerned with relative performance, they

might wish to take an action that will make them worse off in absolute terms if

this would lead to other agents of their type becoming further worse off. This

could occur if an action by a single agent would lead to other agents’ becoming

6We believe that our main argument will apply under alternative specifications of the mar-
ket game provided that they allow for a Nash equilibrium of a replicated game to approximate
a Walrasian equilibrium of the underlying economy.
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bankrupt. This possibility arises under the PS specification since they assume

that agents who violate the balance condition have all their resources confis-

cated. With these considerations in mind, we impose the milder assumption

that an agent whose total value of goods requested exceeds his total receipt

value has his bid vector “shaved” by an amount that is proportional to his

overbidding. More precisely, let

αi =

P
l∈L

qilP
j∈I q

j
l

P
j∈I b

j
lP

l∈L b
i
l

(10)

and let ebil =
(

αibil, if
P
l∈L b

i
l >

P
l∈L

qilP
j∈I q

j
l

P
j∈I b

j
l

bil, otherwise.
(11)

The determination of the agents’ resulting consumption baskets operates as

follows. For all i ∈ I, and l ∈ L, let cil be the consumption of good l by agent
i. This is determined by

cil = w
i
l − qil +

ebilP
j∈I ebjl

X
j∈I

qjl . (12)

As usual, a strategy profile bx is a Nash equilibrium if

ui(bxi, bx−i) ≥ ui(xi, bx−i), ∀i, ∀xi ∈ Xi. (13)

A Nash equilibrium is full if all markets are open. A (feasible) allocation in

the economy is an L-list of commodity bundles,
¡
zi
¢
i∈I , such that

P
i∈I z

i ≤P
i∈I w

i. Proceeding as in PS, we say that for any ² > 0, an allocation
¡
zi
¢
i∈I is

²-efficient (or ²-Pareto efficient) if for any L-list of commodity bundles
¡
zi
¢
i∈I we

have that if ui
¡
zi
¢ ≥ ui ¡zi¢ holds for all i ∈ I, thenPi∈I z

i > (1− ²)Pi∈I wi.

Next, we state the two main results of PS. They establish the connection

between full Nash equilibria of the market game and Pareto optimal states as

well as Walrasian equilibria of the underlying economy.
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Proposition 1 (PS: Approximate Efficiency Theorem): For any positive num-

bers δ, β, and ², any allocation resulting from a full Nash equilibrium in an econ-

omy E = I, wi, ui®
i∈I with w

i < β(1, ...1) for all i ∈ I, Pi∈I w
i > #Iδ(1, ..., 1)

and #I > 16 (#L)β/δ²2 is ²-efficient.

Let Bl =
P

j∈I b
j
l , and Ql =

P
j∈I q

j
l , and define pl = Bl/Ql to denote the

average price of commodity l (provided that the denominator of this expression

is strictly positive). Define an allocation bx resulting from a full Nash equilibrium
to be ²-Walrasian if all markets are open and there exists bp such that for all
i ∈ I, bpbxi = bpwi, and

#{i ∈ I : ∀exi, exi Âi bxi ⇒ bpexi > bp(1− ²)bpwi} > (1− ²)#I, (14)

where, as stated above, prices correspond to ratios of aggregate bids. PS showed

that a full Nash equilibrium of a large enough market game is approximately ef-

ficient and, in addition, it corresponds to an approximate Walrasian equilibrium

of the underlying economy.

Proposition 2 (PS: Approximate Walrasian Allocation Theorem): Under the

conditions of the Approximate Efficiency Theorem, full Nash equilibrium allo-

cations are ²-Walrasian.

This completes the discussion of the market game. Henceforth, we will

concentrate on the evolutionary stability of the full Nash equilibria that support

approximate Walrasian allocations.

3.2 Evolutionary Stability

Before we analyze the market game from an evolutionary point of view, we wish

to introduce the main argument in an informal way. This will also serve as a

motivating discussion for the concepts we introduced in the previous section.

First, notice that no Nash equilibrium in which some markets are closed can
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be disturbed by the introduction of a single trading mutant. This is because

at least one agent on each side of the market is necessary for any trade. While

the existence of such (partial) autarky Nash outcomes is plausible, it is also

insightful to study under what conditions evolutionary forces will result in the

“opening of markets,” leading to a Pareto superior outcome. To our knowledge,

ours is the first example to demonstrate that evolutionary pressure can lead

to the opening of new markets. The fact that this requires the simultaneous

introduction of mutations from each side of the market is exactly what SESS is

designed to capture.

A separate issue from whether all markets will be open is whether evolution

will give rise to an efficient or, more restrictively, to a Walrasian outcome. Hav-

ing established that no state in which some or all markets are closed corresponds

to an SESS, we turn to the question whether states that correspond to Walrasian

equilibria are SESS. Here, a difficulty arises. The fact that we deal with a finite

game implies that each individual agent has some market power. Of course, this

market power vanishes as the number of agents increases. This suggests that

in the case where the economy is large enough, we can expect that the above

question will be answered in the affirmative, but only in an approximate sense.

To see this, let us suppose that the economy is at a full Nash equilibrium.

Suppose that an agent mutates to a different bid/offer. Clearly, since the pre-

vious situation was a Nash equilibrium, the mutant will be worse off. However,

this does not imply the evolutionary stability of the full Nash equilibrium. The

reason is as follows. Since there is a finite number of agents, the mutation will

result in slightly different prices for at least some agents. While the mutant

is worse off under the new prices, it could be that other agents of his type are

even more worse off or, in other words, the mutant could be better off in relative

terms. Thus, the evolutionary stability of the Walrasian equilibrium is not auto-

matic. A continuity argument, however, guarantees that if the economy is large
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enough, a small number of mutations cannot make the mutants better off by

more than an arbitrarily small amount. Thus, the full Nash equilibrium, which

PS have shown to be approximately Walrasian, is also an approximate SESS.

Formalizing the details of this argument is the main purpose of this section. In

what follows, we follow Debreu and Scarf (1963)7 in formalizing the notion of

a large economy. In particular, given the economy E, we will consider a replica
economy Er resulting from replicating economy E r times. The new economy,
Er, contains rI agents, and every population increases r times. We have the
following result.

Theorem 1 Consider economy E for which the conditions of the Approximate
Efficiency Theorem hold. For any ² > 0, there exists r ∈ N such that all full

Nash equilibrium allocations are ²-SESS for all replicas, Er, of economy E with
r ≥ r. For any allocation different from a full Nash equilibrium allocation, there
exists ²0 > 0 and r0 > 0 such that this allocation is not an ²-SESS, where

² ∈ (0, ²0).

Proof. Since the conditions of the Approximate Efficiency Theorem hold, the

full Nash equilibrium allocation for the economy E is ²-efficient. We assume
that all agents who have the same endowment and the same strategy choices

are from the same population. Agent i’s utility can be written in the following

form:

uir (x) = u
i
r

¡
xi;B;Q

¢
, (15)

where Bl =
P
j∈I b

j
l and Ql =

P
j∈I q

j
l are the aggregate bids and offers, for all

l ∈ L, while B = (B1, ..., BL), and Q = (Q1, ..., QL). Note that the function uir
is continuous in all its variables. Since in the full Nash equilibrium all markets

are open, we have that Bl > 0 and Ql > 0 for all l ∈ L.
7See, for example, Jehle and Reny (2001) for a more modern reference.
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It is easy to check that all conditions of the Approximate Efficiency Theorem

hold for economy Er, r > 1. Consider a coalition of agents, C 6= ∅, consisting
of at most one agent per type, who mutate to yi. Let ( eB; eQ) be the resulting
aggregate bids and offers. Note that, excluding all agents i ∈ C in the new

economy, Er, the aggregate bids and asks increase by a factor of r for all goods
in comparison with economy E. Therefore, there exists r ∈ N such that, for any
r ≥ r, ¯̄̄

uir
¡
xi;B;Q

¢− uir(yi; eB; eQ)¯̄̄ < ²

2
, for all i ∈ C, (16)

and ¯̄̄
uir
¡
xi;B;Q

¢− uir(xi; eB; eQ)¯̄̄ < ²

2
, for all i ∈ I/C, (17)

where yi ∈ Xi, for all i, and eBl( eQl) differ(s) from Bl(Ql) by the choice of at

most one agent per population, for all l ∈ L. Inequalities (16) and (17) follow
from the continuity of functions ui and the definition of ebil in expression (11).
Now, it follows immediately that¯̄̄

uir(x
i; eB; eQ)− uir(yi; eB; eQ)¯̄̄ ≤

≤
¯̄̄
uir
¡
xi;B;Q

¢− uir(xi; eB; eQ)¯̄̄+
+
¯̄̄
uir
¡
xi;B;Q

¢− uir(yi; eB; eQ)¯̄̄ <
<
²

2
+
²

2
= ². (18)

In other words, a full Nash equilibrium allocation for the economy Er is an
²-SESS.

Next, consider any strategy profile x leading to (B;Q) and resulting in a

state other than a Walrasian equilibrium. Then, there exists a coalition of

agents, C 0 6= ∅, (consisting of at most one agent per type), ²0 > 0, r0 > 0, and
strategies yi for all i ∈ C 0, such that for any ² ∈ (0, ²0) and any r > r0,

uir(y
i; eB; eQ)− uir(xi;B;Q) > 3²

2
, for all i ∈ C 0, (19)
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and ¯̄̄
uir(x

i; eB; eQ)− uir(xi;B;Q)¯̄̄ < ²

2
, for all i ∈ I/C 0. (20)

The last inequality (20) follows from the continuity of the utility function, uir.

Inequality (19) follows from the following observation. Consider any allocation

x in which not all markets are open. This implies that there exists a coalition of

agents, C 0, such that every member of the coalition can gain by using a deviant

trade strategy yi. Choose ²0 to be smaller than the minimal gain over the

members of C 0. Similarly, if the initial allocation x is such that all markets are

open but different from a Walrasian allocation, then there exists a population i

such that an agent from this population can deviate from xi to playing yi (the

best reply given strategy choices of all other agents). Such an agent will obtain

a strictly higher payoff. Inequality (19) follows.

Finally, this implies that

uir(y
i; eB; eQ)− uir(xi; eB; eQ) >

>
¯̄̄
uir(y

i; eB; eQ)− uir(xi;B;Q)¯̄̄−
−
¯̄̄
uir
¡
xi;B;Q

¢− uir(xi; eB; eQ)¯̄̄ > ². (21)

The next corollary connects our solution concept to Walrasian equilibrium.

Corollary 1 Suppose that the conditions of the Approximate Efficiency Theo-

rem hold. Then there exists r ∈ N such that ²-Walrasian equilibria are the only
²-SESS for or all replicas, Er, of economy E with r ≥ r.

Proof. This follows from Theorem 1 and from the Approximate Walrasian

Allocation Theorem.

It is worth mentioning that the above results will not hold in general if

the economy is populated by a small number of agents. In that case, by hav-

ing a non-negligible effect on the price, an agent mutating from the full Nash
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equilibrium allocation may be able to make himself better off relative to the

other agents of his type. Therefore, full Nash equilibria may not correspond

to any ²-SESS if agents have significant market power. While this observation

is consistent with the traditionally held view that competitive outcomes arise

when individual agents are of insignificant size, it is distinct from Vega-Redondo

(1997), in which a competitive outcome is shown to be evolutionary stable in

the context of a Cournot oligopoly model where agents have significant market

power. This suggests that whether a partial or a general equilibrium framework

is assumed matters when determining the evolutionary stability of Walrasian

outcomes.

4 Conclusion

We studied the evolutionary stability of the Walrasian equilibrium in the con-

text of the strategic market game, introduced by Shubik (1972). We introduced

a strong version of evolutionary stable strategies, SESS, for asymmetric games

played by finite populations. SESS requires stability against multiple, simulta-

neous mutations. The introduction of a small number of “mutants” is sufficient

for Pareto improving trade to be generated. Thus, Pareto inferior strict Nash

equilibria where some or all markets are closed due to a coordination failure

do not constitute SESS. Provided that agents lack market power, approximate

Walrasian equilibrium outcomes are shown to be the only ²-SESS. While our

specification of the market game closely follows the one in PS, we believe that

our analysis holds under alternative specifications provided that they allow for a

Nash equilibrium of a replicated game to approximate a Walrasian equilibrium

of the underlying economy.

An important extension of our analysis concerns the relation between our

static SESS concept and the asymptotically stable points of a suitably defined

dynamic system describing the learning process. Such a dynamic system must be
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able to distinguish between Walrasian outcomes and other strict Nash equilibria

involving (partial) autarky outcomes. This extension is left to future research.
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