10,392 research outputs found

    Categorical Range Reporting with Frequencies

    Get PDF
    In this paper, we consider a variant of the color range reporting problem called color reporting with frequencies. Our goal is to pre-process a set of colored points into a data structure, so that given a query range Q, we can report all colors that appear in Q, along with their respective frequencies. In other words, for each reported color, we also output the number of times it occurs in Q. We describe an external-memory data structure that uses O(N(1+log^2D/log N)) words and answers one-dimensional queries in O(1 +K/B) I/Os, where N is the total number of points in the data structure, D is the total number of colors in the data structure, K is the number of reported colors, and B is the block size. Next we turn to an approximate version of this problem: report all colors sigma that appear in the query range; for every reported color, we provide a constant-factor approximation on its frequency. We consider color reporting with approximate frequencies in two dimensions. Our data structure uses O(N) space and answers two-dimensional queries in O(log_B N +log^*B + K/B) I/Os in the special case when the query range is bounded on two sides. As a corollary, we can also answer one-dimensional approximate queries within the same time and space bounds

    Supporting Data mining of large databases by visual feedback queries

    Get PDF
    In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database

    VisDB: Database Exploration

    Get PDF

    Approximate Nearest Neighbor Fields in Video

    Full text link
    We introduce RIANN (Ring Intersection Approximate Nearest Neighbor search), an algorithm for matching patches of a video to a set of reference patches in real-time. For each query, RIANN finds potential matches by intersecting rings around key points in appearance space. Its search complexity is reversely correlated to the amount of temporal change, making it a good fit for videos, where typically most patches change slowly with time. Experiments show that RIANN is up to two orders of magnitude faster than previous ANN methods, and is the only solution that operates in real-time. We further demonstrate how RIANN can be used for real-time video processing and provide examples for a range of real-time video applications, including colorization, denoising, and several artistic effects.Comment: A CVPR 2015 oral pape

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database
    • …
    corecore