41,584 research outputs found

    Formal Verification of Real-Time Function Blocks Using PVS

    Full text link
    A critical step towards certifying safety-critical systems is to check their conformance to hard real-time requirements. A promising way to achieve this is by building the systems from pre-verified components and verifying their correctness in a compositional manner. We previously reported a formal approach to verifying function blocks (FBs) using tabular expressions and the PVS proof assistant. By applying our approach to the IEC 61131-3 standard of Programmable Logic Controllers (PLCs), we constructed a repository of precise specification and reusable (proven) theorems of feasibility and correctness for FBs. However, we previously did not apply our approach to verify FBs against timing requirements, since IEC 61131-3 does not define composite FBs built from timers. In this paper, based on our experience in the nuclear domain, we conduct two realistic case studies, consisting of the software requirements and the proposed FB implementations for two subsystems of an industrial control system. The implementations are built from IEC 61131-3 FBs, including the on-delay timer. We find issues during the verification process and suggest solutions.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Research Findings on Empirical Evaluation of Requirements Specifications Approaches

    Get PDF
    Numerous software requirements specification (SRS) approaches have been proposed in software engineering. However, there has been little empirical evaluation of the use of these approaches in specific contexts. This paper describes the results of a mapping study, a key instrument of the evidence-based paradigm, in an effort to understand what aspects of SRS are evaluated, in which context, and by using which research method. On the basis of 46 identified and categorized primary studies, we found that understandability is the most commonly evaluated aspect of SRS, experiments are the most commonly used research method, and the academic environment is where most empirical evaluation takes place
    • 

    corecore