8,881 research outputs found

    Modeling Cumulative Arm Fatigue on Large Multi-touch Displays

    Get PDF
    Large multi-touch displays have long been studied in the lab, and are beginning to see widespread deployment in public spaces. Although they are technologically feasible, research has found that large multi-touch displays are not always used, and that fatigue is commonly identified as a significant barrier. Fatigue, often called the `gorilla arm' effect, prevents people from using large displays for extended periods of time. One solution to this problem is to design large-scale interfaces that can minimize actual fatigue in practice. A first step towards building such an interface is to quantify fatigue, and more importantly, to quantify it easily. While there have been methods developed to estimate arm fatigue in mid-air interaction, there remains little understanding of fatigue on touch-based interfaces. To address this gap, we propose that existing models for mid-air interaction may be effective for measuring fatigue on large multi-touch displays. We evaluated the accuracy of Jang et al.'s mid-air Cumulative Fatigue model for touch interaction tasks on a large display. We found that their model underestimates subjective fatigue for multi-touch interaction, but can provide accurate estimates of subjective fatigue after fine-tuning of model parameters. We discuss the implications of this finding, and the need to further develop tools to evaluate fatigue on large, multi-touch displays

    Expanding the bounds of seated virtual workspaces

    Get PDF
    Mixed Reality (MR), Augmented Reality (AR) and Virtual Reality (VR) headsets can improve upon existing physical multi-display environments by rendering large, ergonomic virtual display spaces whenever and wherever they are needed. However, given the physical and ergonomic limitations of neck movement, users may need assistance to view these display spaces comfortably. Through two studies, we developed new ways of minimising the physical effort and discomfort of viewing such display spaces. We first explored how the mapping between gaze angle and display position could be manipulated, helping users view wider display spaces than currently possible within an acceptable and comfortable range of neck movement. We then compared our implicit control of display position based on head orientation against explicit user control, finding significant benefits in terms of user preference, workload and comfort for implicit control. Our novel techniques create new opportunities for productive work by leveraging MR headsets to create interactive wide virtual workspaces with improved comfort and usability. These workspaces are flexible and can be used on-the-go, e.g., to improve remote working or make better use of commuter journeys

    Ergonomic Design of Human-CNC Machine Interface

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Improving Business Performance Through The Integration Of Human Factors Engineering Into Organizations Using A Systems Engineeri

    Get PDF
    Most organizations today understand the valuable contribution employees as people (rather than simply bodies) provide to their overall performance. Although efforts are made to make the most of the human in organizations, there is still much room for improvement. Focus in the reduction of employee injuries such as cumulative trauma disorders rose in the 80 s. Attempts at increasing performance by addressing employee satisfaction through various methods have also been ongoing for several years now. Knowledge Management is one of the most recent attempts at controlling and making the best use of employees knowledge. All of these efforts and more towards that same goal of making the most of people s performance at work are encompassed within the domain of the Human Factors Engineering/Ergonomics field. HFE/E provides still untapped potential for organizational performance as the human and its optimal performance are the reason for this discipline s being. Although Human Factors programs have been generated and implemented, there is still the need for a method to help organizations fully integrate this discipline into the enterprise as a whole. The purpose of this research is to develop a method to help organizations integrate HFE/E into it business processes. This research begun with a review of the ways in which the HFE/E discipline is currently used by organizations. The need and desire to integrate HFE/E into organizations was identified, and a method to accomplish this integration was conceptualized. This method consisted on the generation of two domain-specific ontologies (a Human Factors Engineering/Ergonomics ontology, and a Business ontology), and mapping the two creating a concept map that can be used to integrate HFE/E into businesses. The HFE/E ontology was built by generating two concept maps that were merged and then joined with a HFE/E discipline taxonomy. A total of four concept maps, two ontologies and a taxonomy were created, all of which are contributions to the HFE/E, and the business- and management-related fields

    Interactive natural user interfaces

    Get PDF
    For many years, science fiction entertainment has showcased holographic technology and futuristic user interfaces that have stimulated the world\u27s imagination. Movies such as Star Wars and Minority Report portray characters interacting with free-floating 3D displays and manipulating virtual objects as though they were tangible. While these futuristic concepts are intriguing, it\u27s difficult to locate a commercial, interactive holographic video solution in an everyday electronics store. As used in this work, it should be noted that the term holography refers to artificially created, free-floating objects whereas the traditional term refers to the recording and reconstruction of 3D image data from 2D mediums. This research addresses the need for a feasible technological solution that allows users to work with projected, interactive and touch-sensitive 3D virtual environments. This research will aim to construct an interactive holographic user interface system by consolidating existing commodity hardware and interaction algorithms. In addition, this work studies the best design practices for human-centric factors related to 3D user interfaces. The problem of 3D user interfaces has been well-researched. When portrayed in science fiction, futuristic user interfaces usually consist of a holographic display, interaction controls and feedback mechanisms. In reality, holographic displays are usually represented by volumetric or multi-parallax technology. In this work, a novel holographic display is presented which leverages a mini-projector to produce a free-floating image onto a fog-like surface. The holographic user interface system will consist of a display component: to project a free-floating image; a tracking component: to allow the user to interact with the 3D display via gestures; and a software component: which drives the complete hardware system. After examining this research, readers will be well-informed on how to build an intuitive, eye-catching holographic user interface system for various application arenas

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance
    corecore