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Abstract

Large multi-touch displays have long been studied in the lab, and are beginning to
see widespread deployment in public spaces. Although they are technologically feasible,
research has found that large multi-touch displays are not always used, and that fatigue is
commonly identified as a significant barrier. Fatigue, often called the ‘gorilla arm’ effect,
prevents people from using large displays for extended periods of time. One solution to this
problem is to design large-scale interfaces that can minimize actual fatigue in practice. A
first step towards building such an interface is to quantify fatigue, and more importantly,
to quantify it easily. While there have been methods developed to estimate arm fatigue in
mid-air interaction, there remains little understanding of fatigue on touch-based interfaces.
To address this gap, we propose that existing models for mid-air interaction may be effective
for measuring fatigue on large multi-touch displays. We evaluated the accuracy of Jang et
al.’s mid-air Cumulative Fatigue model for touch interaction tasks on a large display. We
found that their model underestimates subjective fatigue for multi-touch interaction, but
can provide accurate estimates of subjective fatigue after fine-tuning of model parameters.
We discuss the implications of this finding, and the need to further develop tools to evaluate
fatigue on large, multi-touch displays.
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Chapter 1

Introduction and Overview

Large interactive displays, usually known as wall display, have been envisioned by the
Human-Computer Interaction (HCI) community as a platform for ubiquitous interaction
for long (e.g., [3, 4, 5]). The natural and intuitive interaction offered by multi-touch
displays, combined with their attractive and inviting large-format, is well-suited to engage
non-technical users. They serve as an ideal place for multiple users to gather around and
share and explore data collaboratively. For these reasons, large multi-touch displays have
been installed in schools [6], offices [7, 8], and public spaces [7, 9, 10].

However, as technologies have advanced and large displays become more capable, re-
searchers have found barriers to interacting with large multi-touch displays. These include
privacy concerns, feelings of social embarrassment[11, 12, 9], and more importantly, the
fatigue and its consequences on user experience. Working on multi-touch displays for ex-
tended periods of time leads to arm fatigue, a phenomenon that occurs so frequently that
it is referred to by the research community as the ‘gorilla arm’ effect [13]. Wang and Ren
note that arm fatigue is the main drawback of multi-touch interaction, and that the larger
the display, the more fatiguing interaction is on the user [14]. Given the prominence of the
problem surrounding arm fatigue and the push towards bigger displays, there is a need to
understand how large-scale interfaces can be designed to minimize fatigue.

Arm fatigue, as a specific type of muscle fatigue, not only affects comfort perception
of users, but also their completion of operations and even their health condition, which
may lead to serious consequences. Several studies identified a positive correlation between
muscle fatigue and muscle injury and damage [15, 16]. Grujicic et al. [17] particularly
researched the musculoskeletal fatigue during long-distance driving, indicating the safety
issue caused by muscle fatigue. These results all lead to a demand for understanding arm
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fatigue and minimizing it.

Existing studies showed the negative effect of fatigue caused by large-scale interfaces.
One specific workplace study conducted by Leme and Maia [18] aimed to evaluate the
fatigue of teachers in the modern classroom setting. Modern classrooms are normally
equipped with state-of-the-art resources, including projectors, interactive whiteboards, and
computers. Teachers usually need to work with these devices for extended periods of
time throughout the school day. Teachers who participated in this study expressed that
they become fatigued due to their body posture and the utilized resources. The fatigue
experienced can be intense for specific cases, including both visual fatigue and muscle
fatigue in the neck and shoulder. More precisely, 29 % of the participants reported tiredness
and visual fatigue, while over 14 % complained about the pain in the neck and shoulder
muscles, thighs and legs. Such facts reinforce the importance of solving the arm fatigue
problem before large displays become applied to a wider range of workplaces.

To minimize arm fatigue, one must first be able to measure it reliably. As Jang et al. [1]
noted in their review of the literature, more than 300 research papers within the HCI
community cite fatigue as an issue, and yet we still lack means of accurately measuring it.
Traditionally, measuring arm fatigue is done either objectively with intrusive, expensive,
and specialized test rigs [19, 20, 21], or subjectively using a fatigue self-report evaluation
such as the Borg Scale [22]. Self-reporting is shown to be accurate for most purposes [21],
but can be invasive since it requires frequent interruptions during the measured activity.
As a middle ground, researchers have developed reliable fatigue models to measure mid-air
arm fatigue using non-invasive whole-body tracking with a single consumer-level depth
camera. The Consumed Endurance (CE) model from Hincapié-Ramos et al. is based on
shoulder torque [23], and the Cumulative Fatigue (CF) model from Jang et al. includes
the elbow as well. The CE model has already been used to justify and evaluate new mid-
air gestures [24]. However, neither the CE nor CF models were explicitly designed for
measuring fatigue on large multi-touch displays.

We expected that, models designed for mid-air interaction may also perform well for
measuring fatigue on large multi-touch displays. Although large multi-touch interfaces
contain a two-dimensional (2D) surface for the users to interact with, while mid-air inter-
face allows movement in three-dimensional (3D) space [25], the basic operations for both
interfaces are similar. The arm motions of both mid-air and large-display multi-touch in-
teractions are similar. For both mid-air and large-display multi-touch interactions, users
primarily operate with their dominant hand for precise actions [26], with the non-dominant
hand to support more complicated operations using two-hand gestures. Furthermore, dur-
ing interaction, users lift their arms and move their hands in space. Since mid-air fatigue
models rely on bio-mechanical models and shoulder torque, we hypothesize that they can
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be applied towards large-display multi-touch interaction as well. Specifically, we predict
that, the CF model proposed by Jang et al. can estimate cumulative arm fatigue for large
multi-touch displays with little or no adjustments.

To validate this hypothesis, we carried out an experiment using a similar protocol to
Jang et al., and evaluate the CF model’s performance in estimating arm fatigue for large
multi-touch displays. Our work extends the study protocol from Jang et al. to multi-touch
tapping and dragging tasks over short and long distances. Using this protocol, we gather
Borg CR10 Scale ratings and whole-body tracking data in a 24-participant experiment to
quantitatively. From the results, we found the CF model underestimates subjective fatigue
for multi-touch interaction, but can provide accurate estimates of subjective fatigue after
fine-tuning of model parameters with a higher upper bound.

Our contributions include: (1) empirical validation of the CF model for estimating
subjective arm fatigue in multi-touch interaction on large displays; (2) demonstrating that
the CF model underestimates fatigue for multi-touch tasks, but shows high accuracy during
rest periods; and (3) that though fine-tuning of model parameters, the CF model can
accurately predict arm fatigue for touch interaction. Based on our investigation, we discuss
opportunities to further refine measures of fatigue through improvements to the CF model.
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Chapter 2

Literature Review

While the mouse and keyboard have evolved over decades of use and are highly efficient
input devices, large multi-touch displays provide a relatively new and evolving means of
interaction. Recent technological developments make it possible for multi-touch displays
to be larger and less expensive, which promotes their real-world deployment, ranging from
indoor to outdoor settings, from office and work contexts to public spaces and communities.
As the HCI community has explored multi-touch interaction, numerous benefits have been
identified. For example, it is considered ‘intuitive’ and ‘natural’ [27], and thus is accessible
to a wide range of users without any barriers to learning. Touch input on large displays also
allows a group of users to collaborate seamlessly around shared content and has been shown
to support communication and workspace awareness [28, 29]. A variety of information can
be presented simultaneously for collaborators and audiences to review, share opinions,
modify, and leave comments if needed. These features explain the surge in usage of multi-
touch displays in a wide variety of settings for different purposes.

Multi-touch input, however, is not always a perfectly satisfying user experience, and
several issues need to be resolved before the a larger-scale adoption of large multi-touch
displays can occur. Challenges that currently exist for public displays include attracting
participation from potential users, dissolving users’ social embarrassment, which refers to
discomfort when witnessed by others, and protecting users’ interaction and information
privacy [30, 31, 32]. For more formal environments, such as office and work contexts,
where users need to operate with a large multi-touch display for extended periods of time,
an additional common limitation is arm fatigue.

Arm fatigue remains a challenge when operating large, multi-touch displays [33, 34,
35, 36]. In practice, fatigue is frequently cited as a drawback of multi-touch interaction,
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particularly over extended periods of use on large and vertical displays [37, 14, 13]. We
know from previous research that fatigue is universal and applies to both horizontal (i.e.,
tabletop) and vertical displays [38].

Many research projects were conducted to address fatigue on large displays. For in-
stance, researchers have explored how different display configurations, such as their height
and angle, can influence force exertion over extended time during multi-touch interaction
[39, 38]. Similarly, means of offloading interaction to nearby devices like smartphones
[40, 41] and smartwatches [42], or even to the users’ body [43, 44] have been developed.
Users may interact with the elements duplicated on the smartphones or smartwatches
[40, 42] or projected to their hands or arms as a portable touchpad [43] to control a con-
nected large display. However, in practice, all of these solutions can be problematic in
some ways. Adjusting the angle of the display to minimize arm fatigue is not ideal in
collaborative scenarios because settings that decrease fatigue of one user may increase fa-
tigue of another. Moreover, vertical displays are well-suited to sharing information within
a group, and offloading interactions from a shared display to nearby devices, will hide that
user’s interactions from others, thus negatively impacting group awareness [45]. Thus,
there remains a need to better understand and design for fatigue on conventional large
displays.

Finally, while many researchers have designed interaction techniques to address fatigue,
such as, At-your-side gestures like Gunslinger [46, 47], and smart devices like E-Pad [48],
few have directly compared their proposals with alternative designs proposed by other
researchers. We argue that the lack of such studies arises from the shortage of accurate,
inexpensive, and easily implementable fatigue evaluation methods.

Here we review prior work related to objective and subjective evaluation of muscle
fatigue, models to estimate cumulative fatigue, fundamental arm motion detection tech-
nology required by the models.

2.1 Evaluating Arm Fatigue

Existing measures for evaluating fatigue can be classified as either subjective or objective.
Subjective measures are most likely to be familiar to the HCI community. For example,
the NASA Task Load Index (NASA-TLX) in Figure A.1 [2] is frequently used in HCI,
and its ‘physical demand’ dimension partly encapsulates fatigue. The Borg CR10 Rating
of Perceived Exertion (RPE) [22] has also been used, particularly to understand fatigue
during mid-air pointing (e.g., [1]), and has been empirically shown to strongly correlate
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with objective measures [49, 50, 51]. The Borg CR10 Scale has been shown to be best
suited when there is an overriding sensation arising from a specific area of the body, for
example, muscle fatigue. The CR10 Scale is designed as linear and interval with 0.5-length
step, which makes it easy for people to understand in a short time.

Subjective measures have been used in the past because they are lightweight and easily
included in most evaluations. They require participants to rate their experience on a single
scale (or, for NASA-TLX, six scales) and are quickly and easily collected at the end of a
trial. However, they are also limited in significant ways. First, they are subjective, and
interpretation of a rating on the scale may vary significantly among users. Second, they
cannot, by design, provide real-time feedback on users’ fatigue since they require users to
stop what they are doing and give their rating. In this situation, participants’ ratings may
be different from the true rating when they are not interrupted.

Objective measures of fatigue are typically collected by calculating an individual’s max-
imal strength and the proportion of that strength consumed during an activity [1]. Such
quantification always requires measuring changes in physiological markers, such as muscle
activation [52], blood pressure [53], or heart rate [54]. While highly accurate and capable
of providing fatigue measurements in real-time, physiological sensors can be expensive and
are often impractical for HCI research [19, 20], since the measurements can be complicated
or require a specific environment.

Overall, subjective measures are generally straightforward to collect, whereas objective
measures can be gathered in real-time, are very accurate and easy to replicate. In search of
measures that combine the benefits of both subjective and objective measures, the research
community began to explore how mathematical models can be used to evaluate fatigue.

2.2 Modelling Arm Fatigue

While we are unaware of work that has specifically modeled fatigue for multi-touch displays,
a number of models exist for mid-air interaction. For example, a popular approach for
modeling mid-air fatigue is to model Endurance Time (ET), with several models including
Rohmert’s curve [55], the original Three Compartment Muscle (TCM) model [56, 57], and
the TCM’s more recent version with developments by Ma et al. [58, 59]. These models
show potential in predicting fatigue for either static or dynamic load conditions, but lack
experimental validation, particularly for settings involving human interaction, which makes
them not that suitable for our study. In this work, we consider two recent models that
have been developed and validated with HCI contexts in mind: The Consumed Endurance
(CE) model [23], and the Cumulative Fatigue (CF) model.
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Consumed Endurance (CE) [23] is a novel metric derived from the bio-mechanical
structure of the upper arm, specifically modeling the torque on a user’s shoulder joint
during mid-air gestures. In this model, two major equations are used:

E(Tshoulder) =
a

(Tshoulder/Tmax × 100− 15)b
− c

CE(T, TotalT ime) =
TotalT ime

E(Tshoulder)
× 100

where

Tshoulder = the current shoulder torque
Tmax = the maximum shoulder torque
TotalT ime = the total time consumed by the current task
E(Tshoulder) = the estimated endurance time
a, b, c = parameters calculated from the data

A specific benefit of this model is that it is easily calculated using readily available data
from body tracking hardware, such as a Microsoft Kinect. In the validation of their ap-
proach, Hincapié-Ramos et al. showed a strong correlation between the model’s prediction
and subjective fatigue (i.e., Borg CR10 scale). However, the CE model is limited to static
load conditions by design and does not take into account periods of rest, such as those be-
tween mid-air gestures when the users have their arms at their side. Another limitation is
its assumption that users never exceed an exertion level lower than 15%. This assumption
leads to inaccurate estimations of fatigue for interactions with lower exertion levels. These
limitations were specifically addressed by Jang et al. and solved in developing their CF
model.

Jang et al. extended CE to develop a Cumulative Fatigue (CF) model for mid-air
interaction. Their model is the first to quantify cumulative arm fatigue in recovery-involved
tasks, such as those where users may rest between gestures. Like the CE model, the CF
model also relies on camera-based skeleton tracking via a device like Microsoft Kinect.
However, the CF model includes the users’ elbow joint and an additional degree of freedom
for their shoulder joint. Jang et al. validated their model using a continuous mid-air
pointing task that included rest periods of varying lengths. Their evaluation found a
strong match between the CF model’s estimation and subjective measures of arm fatigue
using the Borg CR10 Scale. They also note that their model performed well for a range of
exertion levels, outperforming the CE metric (including low exertion level under 15 %).
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2.3 CF Model Quantifying Method

The CF model is built upon biomechanical arm model and the concept of three-compartment
muscle (TCM) model.

From previous research, we know that the fatigue can be accurately modeled as a
joint specific phenomenon [23, 1]. When it comes to arm movement, a person’s shoulder
fatigues faster than their elbow or wrist. Therefore, we assumed that arm fatigue is mostly
attributable to shoulder-joint fatigue. To measure the real-time shoulder joint torque, we
decide to build a biomechanical arm model, modeling the upper limb as rigid bodies (links)
connected in series by joints. The biomechanical arm model is shown in Figure 2.1. With
this biomechanical model and accurate measurements of each link’s length and weight,
we are able to calculate shoulder torque at any moment, which will be used in the TCM
model.

Figure 2.1: Biomechanic model of the upper limb [1]

In the TCM model, every motor unit or muscle involved in a task is in one of the
three possible states: Active, Fatigue or Rest. Active motor units represent those
units receiving neural activation and are contributing to the task. Fatigue units include
fatigued motor units without activation. Rest motor units are inactive motor units not
required for the task. The relations between these three states are shown in Figure 2.2.
Here MA,MF ,MR, are the proportion of motor units that are currently in active, fatigued
and rest state, respectively. Each of these proportions is expressed as a percentage of the
maximum voluntary contraction (%MVC). For example, MA = 100% indicates that all
motor units are recruited for an MVC task. A sub-maximal task implies MA ≤ 100%.
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Figure 2.2: The Three Compartment Muscle (TCM) model

The transfer functions between the three motor unit states are defined as below.

dMR

dt
= −C(t) +R×MF

dMA

dt
= C(t)− F ×MA

dMF

dt
= F ×MA −R×MF

Here. F and R are the model parameters for Fatigue Rate and Rest Rate. F is
the rate at which active motor units are fatiguing, and R is the rate at which fatigued
motor units recover and enter the rest state. These two parameters will be identified in
the model fitting stage. C(t) is motor unit activation function, which is defined as:

C(t) =


LD × (TL −MA) if MA < TL,MR > TL −MA

LD ×MR if MA < TL,MR ≤ TL −MA

LR × TL −MA if MA ≥ TL

where TL is the target load defined as a torque ratio [Tcurrent/Tmax]100(%), LD is the muscle
force development factor, and LR is the relaxation factor. The last two parameters are set
to 10 based on the sensitivity analysis by Frey-Law et al. [37].

To identify the optimial value for F and R, the pattern search method was used in the
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model fitting:

maximize
F, R

√√√√ 1

n

n∑
i=1

[
φ(MF (i))−B(i)

]2
subject to F ∈ [Flb, Fub]

R ∈ [Rlb, Rub]

where n is the number of fitting data, MF (i) is the fatigue level estimation, B(i) is the
Borg CR10 scale rating, and the upper and lower bounds of the parameters are defined
as Flb, Fub, Rlb, Rub . We assume a linear relationship between the Borg CR10 scale and
%MVC (proportion of current and maximum torque) based on a review of their relationship
[60]. φ(x) is a linear function mapping the fatigue estimation MF (i) to the Borg CR10
scale. We define this linear mapping as:

φ(x) = 0.0875× x

Although the CE metric and the CF model have both been validated for their perfor-
mance in estimating arm fatigue for mid-air interaction, there are no well-validated models
for arm fatigue estimation of interaction with large, multi-touch displays. There are a num-
ber of similarities between mid-air and large-display interactions that lead us to believe
that the CF model could be applicable. In both cases, users must hold and move their
arms in front of their body, while exerting force from their shoulders. Yet, a significant
difference is that, in multi-touch settings, users are exerting a force on the screen, which
can add friction, provide support, and influence how users perceive fatigue. Therefore, we
can hypothesize that, when users interact with large multi-touch displays, their arm fatigue
may also be predicted with a CF-like model, while minor adjustments may be required to
achieve a more accurate estimation.

2.4 Arm Motion Detection

Arm motion can be analyzed and reproduced with data about joints including the shoulder,
the elbow, and the wrist. To collect data on the involved joints, body-tracking sensors need
to be integrated into the system. One popular body-tracking sensor is the Microsoft Kinect,
which is used by both CE and CF models.

A Microsoft Kinect [61] tracks body motion at a frame rate of 30 Hz; in other words,
for each second, information on the arm motion of the user is captured 30 times. Equipped
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Figure 2.3: Kinect v2 25-joint skeleton

with an RGB color camera and an IR depth camera, the Kinect can track up to six skeletons
at one time, each of which having 25 joints, as shown in Figure 2.3 [62]. Each joint has
11 properties: color (x, y); depth (x, y) ; camera (x, y, z) ; and orientation (x, y, z, w).
The meaning of each property is explained in the Table 2.1. With this data point, a user’s
motion can be continuously tracked, stored, and later, reproduced and analyzed for specific
attributes, including continuous arm fatigue conditions.
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Joint property Meaning
color (x, y) Coordinates of the joint on the image from the color camera
depth (x, y) Coordinates of the joint on the image from the depth camera
camera (x, y, z) The 3D points of the joints in space from Kinects infrared sensor
orientation (x, y, z) Representing yaw, pitch and roll
orientation (w) w serves as a rotation represented as a quaternion

Table 2.1: Kinect 11 Joint Properties and the Meaning

12



Chapter 3

Experiment

With the experiment described below, we evaluate the suitability of Jang et al.’s [1] CF
model for estimating cumulative shoulder fatigue during mid-air interaction. To do so, we
replicated the ‘virtual hand’ mid-air pointing task that they used to validate their model,
but moved interactions to a large, multi-touch display. This design closely mirrors their
‘Condition C’, which asked participants to interact with a display very near to their arm,
but via mid-air interactions. We expected that by replicating this design, but instead
having participants use touch interaction, we would show the adequacy of their model in
estimating fatigue for large, multi-touch interfaces.

3.1 Participants

We recruited 24 right-handed volunteers (7 female) from a local university campus. During
the recruitment, a self-reported screening measure was applied to ensure that no subject
had a musculoskeletal disorder or neurological disease. Participants were asked about
their general health condition and previous medical history about the musculoskeletal
disorder or neurological disease before any further experiment. After that, in the foremost
questionnaire (shown in section A.1), we collected information from participants, including
their age, dominant hand, weight, height, experience with touchscreens and their daily
exercise level. This daily exercise level was explained to participants within the same
document to ensure they reported it correctly. In addition, we took measurements of their
shoulder height, upper arm length, lower arm length, and hand length. According to the
data collected, their ages ranged from 21 to 39 years (µ = 25.7 yrs); heights ranged from
152 to 194 cm (µ = 171.8 cm); weights from 47 to 95 kg (M = 61.3 kg); upper arm lengths
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from 29 to 37 cm (µ = 32.7 cm); lower arm lengths from 21 to 29 cm (M = 25.3 cm); and
hand lengths ranged from 16 to 21 cm (µ = 18.5 cm). Participants’ experience with touch
screens ranged from 0.5 to 6 years (M= 1.8 yrs).

3.2 Apparatus

Figure 3.1: Participant performing tasks in the experiment

Participant completed the ISO 9241-9 standard [63] pointing task on the large, multi-touch
display. Skeletal data was collected by a Microsoft Kinect V2, located to the participant’s right.

We used a Microsoft Kinect version 2 sensor and the corresponding software develop-
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ment kit (SDK) to track arm movements. Data was sampled at 30 frames/second using
a desktop with a Core i7 2.90GHz CPU. The computer was connected to a short-throw
projector to project the task interface from back. The physical size of the projected screen
on the wall was 2× 1.5 m, and the Kinect camera was located 1 meter on the right of the
screen and 1 meter above the floor to track participants’ right arm movements. Partici-
pants stood about 0.5 - 1 m in front of the screen, at a distance where they felt comfortable
working on the touch screen (Figure 3.1). The Kinect camera was placed at a slight angle
facing the participant instead of strickly vertical to the wall to ensure that it captured the
complete skeleton of the participant.

To support touch, the display was equipped with an 84” PQ Labs G4 IR frame. To
minimize friction added through touching the screen, we piloted the study to find the
optional touch screen calibration, and provided talcum powder to participants as lubricant.
The setup was identical for all experiment blocks. The experimental software was written
in JavaScript and HTML, running on Google Chrome browser v60. Actions were taken to
minimize latency during experimental trials.

3.3 Experimental Tasks & Design

To replicate Jang et al.’s evaluation of their CF model, we compared the model’s predicted
arm fatigue with the participant’s subjective ratings. As in their study, we collected fatigue
ratings while participants worked through a series of increasingly fatiguing interactions with
a nearby display. Our experimental design included 2 Task × 2 Distance as within-
subjects factors, with 2 Rest Patterns as a between-subjects factor.

The study Tasks are based on the ISO 9241-9 standard [63] pointing task, with par-
ticipants either Tapping or Dragging targets. This ISO 9241 standard is a multi-part
standard proposed by the International Organization for Standardization (ISO) covering
ergonomics of human-computer interaction. The ISO 9241-9 is widely applied in multiple
scenarios of task design for human-computer interaction evaluation and is demonstrated to
cover most fundamental physical characteristics of computer equipment. For both Tasks,
9 targets arranged in a circle centered on the middle of the display were shown. These tasks
were chosen as representative of common types of multi-touch interaction, since interaction
with large displays often involves tapping on icons or buttons, and moving content from
one place to another via dragging.

Importantly, in this study, we aim to measure perceived fatigue only caused by muscular
effort, and not by the task difficulty, so target sizes are intentionally selected to minimize
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Calibration
(~30 mins)

Interaction
Condition 1
(30 mins)

Interaction
Condition 2
(30 mins)

Free Time ( > 1 hour )

Free Time ( > 1 hour )

Figure 3.2: 3 major experiment sessions

Participants completed three sessions. The first session was used to calibrate the CF model for
each user’s body and maximum torque measurements. The second and third sessions were used

to collect Tapping and Dragging data, and were counterbalanced for Task.

task difficulty. This potential effect was identified by Jang et al. during pilot testing, and
so we decided to replicate their target widths: all targets were calibrated to a width of 10
cm. To study the accuracy of CF model for large screens, we included two Distances:
Short had a distance of 30 cm between targets and a Fitts’s ID of 2.58, while Long had
a distance of 96 cm between targets and a Fitts’s ID of 4.26. Here Fitts’s ID is the index
of difficulty defined by Fitts et al. for quantifying the difficulty of a target selection task
[64]. The metric of Fitts’s ID is:

ID = log2(
2D

W
)

where D is the distance to the center of the target, and W is the tolerance or width of the
target.

Also, since Jang et al. reported that their models performance was robust to changes
in the duration of rest, we included two Rest Patterns as a between-subject factor:
Constant and Dynamic. Participants assigned to the Constant rest pattern took
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Training              
( 5 mins)

Test 1               
(~ 5 mins)

Test 2               
(~ 5 mins)

Rest ( 5 mins)

Rest ( 5 mins)

5 mins

Task (1 min)

Task (1 min)

Task (1 min)

Task (1 min)

Break

Break

Break

Figure 3.3: Detailed structure within each test session

The first sub-session was provided for participants to become familiar with the tasks and
self-reporting experience. The second and third sub-sessions were used to collect Long

Distance or Short Distance data, and were counterbalanced for Distance. Within each
test sub-session, participants alternated between task blocks and break blocks.

a 15-second break between each two 1-minute task block. Participants assigned to the
Dynamic rest pattern received 5 seconds, then 10 seconds, then 20 seconds, then 15
seconds between the 1-minute blocks, replicating the rest pattern used by Jang et al. [1] .

3.4 Procedure

Data collection for each participant spanned three sessions: one for calibration, and one
for each of Tapping and Dragging interactions. To minimize the accumulation of arm
fatigue during the study, each session was scheduled to last for less than 30 minutes, and
at least one hour rest time between each session was mandated. Within each session, we
also scheduled regular break times (i.e., Rest Pattern). The general procedure can be
explain through Figure 3.2 and Figure 3.3.
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During the calibration session, we replicated the protocol reported in Jang et al.’s
validation experiment to calibrate the CF model for each participant. We measured par-
ticipants’ gender, age, height, weight, upper and lower arm lengths, and hand length.
Participants were then shown an introductory video about the Borg Scale, trained in its
use, and provided an opportunity to practice using it with the investigator.

Next, participants performed a calibration task where they held a 2.5-pound weight on
their right wrist and held their arm horizontally for as long as they could. Throughout this
period, participants were asked to practice the use of the Borg scale by regularly reporting
their fatigue levels. By requiring participants to hold the weight for as long as possible, we
were also able to calibrate experienced fatigue with descriptors on the Borg scale.

We then calculated each participant’s maximum shoulder torque using the following
equation from Jang et al.:

Tmax =
−b× Tavg
log(ET

a
)
× 100

where ET is the measured endurance time, and a and b are constants provided by Jang et
al. [1].

In this equation, we can easily see that Tavg, the average torque exerted, and ET , the
endurance time, together contribute to the Tmax, the maximum shoulder torque. Consid-
ering one’s maximum shoulder torque as constant within a certain period of time, Tavg and
ET are correlated. In the calibration task, the participant did not change their posture,
therefore the average torque is only related to the weight they are holding. The heavier
the weight is, the larger the average torque will be and the shorter time participant can
endure.

In the pilot study, we tried several levels of weights for the calibration, including bare
hand, 1 lb, 2.5 lbs, and 5 lbs. We found that when the weight was too light (bare hand or
1 lb), arm fatigue did not increase significantly enough for participants to notice, and the
calibration task may last for too long. However, for 5-lb weight, we noticed that it was
too heavy for some participants to even hold it up, and the arm fatigue increased so fast
that participants skipped some Borg Scale levels, which was not what we intended. We
regarded the calibration task as an extra chance for participants to get familiar with the
Borg10 Scale self-reporting. As a result, we decided to use 2.5 lbs as the weight for formal
calibration.

After at least 1 hour of rest time, participants came back for the second and third
sessions. During the second and third sessions, participants completed the Tapping and
Dragging tasks separately. In both sessions, participants were first instructed on their
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task and the structure of the session (including Resting Pattern), and allowed to prac-
tice the task using the Borg scale, and given the chance to ask questions. This training
sub-session lasted for around 5 minutes. After the training was completed, participants
were given 5 minutes to rest, before completing 5 minutes of trials for each Distance
condition, with a second 5 minute rest period in the middle, matching Jang et al.’s pro-
cedure. The order for Distance was counterbalanced between participants. During each
set of Tapping or Dragging trials, participants were expected to continuously perform
the task with the exception of pre-scheduled breaks according to their assigned Resting
Pattern.

Finally, at the end of their third session, participants completed a short interview about
their experience and were given an opportunity to comment on what they felt was most
fatiguing about the large display interactions.

3.5 Data Collection and Analysis

Throughout each trial, the skeletal data of participants were recorded using a Microsoft
Kinect V2 and used to calculate joint torques using the CF model. To replicate the
experiment as closely as possible, we also applied a moving-average filter (15th order) to
smooth joint-torque trajectories. Computer logs also captured both start time and end
time for each block, all touch positions, and all task events (click, miss, moving distance,
responding time, etc.). Participants’ subjective ratings for arm fatigue were recorded by
the investigator verbally every 20 seconds. Participants’ interview responses were recorded
via field notes.

Before analysis, we first reviewed the data for correctness, and cleaned the incomplete,
incorrect, inaccurate or irrelevant parts if there was any. We went through the Kinect
captured videos with the skeleton tracked to confirm that all joints were tracked and labeled
correctly. In addition, we checked the participants’ subjective ratings for the correctness,
all remaining within the range of [0, 10].

We used computer logs with blocks and touch information to calculate the trial number
and error rate, which helped with the general understanding about participants’ perfor-
mance. We fed the body tracking data, together with the corresponding body measure-
ments, to the CF model to calculate the shoulder torque and predict the real-time fatigue
prediction. These predictions were then compared with participants’ subjective ratings,
which were collected during the experiment, to evaluate the performance of the CF model
for large mulit-touch display interaction.
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To investigate differences between participants’ perceived fatigue and that predicted by
the CF model, we calculated Root-Mean-Square-Error (RMSE) values every 20 seconds
for each session. These values were calculated based on the difference between the CF
model and participants’ subjective ratings recorded during each trial. We then used a
repeated-measures analysis of variance (RM-ANOVA) with Task, Distance, and Rest
Condition as factors to examine the RMSE and participants’ subjective reports data for
trends. After a visual inspection of the RMSE data, we performed a second RM-ANOVA
with data summarized by Block to investigate differences in RMSE over time.

All collected data met the assumptions of independence, equality, and normality, for
the ANOVA tests. For all tests, α = .05.

3.6 Results

On average, our participants completed 369 drags and 619 taps throughout their sessions,
with an overall error rate of 4.6%. Our RM-ANOVA revealed no differences in RMSE for
Task (F1,22 = .077, p = .784), Distance (F1,22 = .441, p = .513), or Rest Pattern
(F1,22 = .330, p = .572). And throughout the entire study, we found an average RMSE
for the CF model of 2.399 (Figure 3.4). Similarly, our analysis of participants’ subjective
ratings revealed no differences between Task (F1,22 = 1.365, p = .255), Distance (F1,22 =
.543, p = .469), or Rest Pattern (F1,22 = .186, p = .671). Participants’ average reported
fatigue across the entire study was 2.72.

We also examined RMSE over time, and found a main effect for Block (F1,22 =
14.002, p = .001), where RMSE rose from an average of .854 in Block 1 to an average
of 2.28 in Block 14 (Figure 3.4). No interaction effects were found for Block × Task
(F1,22 = .164, p = .597) or Block × Distance (F1,22 = .337, p = .631).

Further visual inspection of the graph suggested that the error in RMSE appeared
significantly greater during periods of activity than those in which participants were allowed
to rest. To examine these differences, we performed an additional RM-ANOVA comparing
RMSE for periods of Activity and Rest with Rest Pattern as a between-subjects
variable. For this analysis, participants’ blocks 3, 7, and 11 for the Constant Rest
Pattern, and blocks 3, 6, 10, and 14 for the Dynamic Rest Pattern were classified
as Rest.

We found a significant difference in RMSE (F1,22 = 28.034, p ≈ .000), where RMSE was
higher in blocks without a rest period (µ = 1.588, SE = .179) than in those with a rest
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Figure 3.4: Overall CF model results

Study-wide averages for CF model predicted fatigue, participants’ reported fatigue, and RMSE,
by experimental block. Error bars show standard error.

period (µ = .698, SE = .090). Our analysis found no interaction effect between Block
and Rest Pattern or Block and Activity (F1,22 = 1.160, p = .293).

All of the fatigue predictions were calculated by the CF model with the suggested
parameters from Jang et al., including the F and R. However, after a visual inspection of
Figure 3.4, we could came to the conclusion that the model does not perform aggressively
enough when fatigue is increasing or decreasing. We therefore adjusted the upper bound
of both F and R to generate an improved model, where model parameters F and R lied
outside of Jang et al.’s suggested range for mid-air interaction. Our improved CF model,
with tuned F and R, showed improved RMSE when compared to Jang et al.’s mid-air
model.
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Figure 3.5: Box plots of RMSE between Active and Rest Blocks

Box plots of RMSE for Blocks containing no rest period (Active) and those containing a rest
period (Rest), with Constant (left) and Dynamic (right) Rest Patterns. Our RM-ANOVA
found a significant difference between Active and Rest periods, where the CF model was more
accurate for resting periods. Median marked by white bar, mean marked by white dot.
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Chapter 4

Discussion

Our research was motivated by the need for more accurate and easily deployable measures
of fatigue for multi-touch interaction on large displays. We hoped that by leveraging Jang
et al.’s [1] CF model, we would validate such a tool. Our initial analysis of RMSE found an
average of 2.4 across all conditions. In their initial validation of the CF model for mid-air
interaction, Jang et al. report RMSEs ranging from .79 to 1.38 with an overall RMSE
of 1.33. These differences between reported and predicted fatigue are significantly smaller
than what we observed for multi-touch interaction. Based on these measurements, we must
conclude that their CF model does not directly translate to multi-touch interaction.

We performed an RM-ANOVA to understand whether any of our independent variables
(i.e. Task, Distance, or Rest Pattern) influenced the error rate of the model, but
found no differences. Based on this analysis, RMSE appears to be equally high across all
of our independent variables. However, visual inspection of our data pointed to time (i.e.
Block) as an influential factor of RMSE, and in particular, we found that fluctuations
in the CF model’s estimates corresponded to blocks in which participants were allowed to
rest. This analysis revealed that RMSE increased throughout our study and that estimates
for blocks with a rest period were significantly more accurate than those without.

Based on these results, we calibrated the model to more accurately predict fatigue up
close to the display. The CF model depends on Fatigue and Recovery rate parameters,
and they provide upper and lower bounds for F and R based on mid-air interaction.
In a preliminary analysis of our data, we found that increasing F to the upper bound
improved RMSE by 8.7%, and further optimization beyond that bound improved RMSE
by 10.2% (RMSE 1.8) as shown in Figure 3.4. Notably, the optimal value is outside their
suggested bound, indicating that interaction on large multi-touch displays may fatigue
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users differently than mid-air interaction, and that modeling such interactions requires the
model to be calibrated for them.

One specific concern for the data analysis is that using the Borg Scale for reported
fatigue may cause autocorrelation, since participants will be more likely to try to keep
these scores consistent and less likely to rate lower than their previous rating as they keep
performing the tasks. This symptom is expected, because in the TCM model, participants’
muscle state won’t directly transfer from fatigue to active, and only transfer from fatigue
to rest when resting. In this way, the participants’ ratings are supposed to keep increasing
during task blocks. Besides, we provided the calibration session as a training session for
the Borg scale rating and confirmed that every participant understood the Borg scale
completely before proceeding to the next session. Another piece of evidence suggesting
that autocorrelation does not bias the conclusion is that the starting rating of each session
from every participant is 0. This guarantees that participants understood the Borg Scale
and were able to give a consistent rating, and that participants always started the test
sessions in a fully recovered condition.

We also performed a one-way ANOVA with participants’ demographic data and body
measurements to understand whether any of these independent variables (i.e. Gender,
Age, or Endurance Time) influenced the general fatigue rating. We found no differ-
ences for Gender(F1,22 = 1.508, p = .232), Age(F1,22 = 0.025, p = .877), Height(F1,22 =
2.096, p = .162), or Arm Length Ration(F1,22 = 0.031, p = .863). However, En-
durance Time(F1,22 = 26.59, p ≈ .000) significantly contributed to the average fatigue
ratings. Participants with longer endurance time reported lower fatigue ratings, which is
expected since longer endurance time results in larger maximum torque.

We now discuss some of the qualitative findings from our study that may further elu-
cidate differences between the CF model’s predictions and the fatigue experienced by par-
ticipants.

4.1 Subjective Fatigue Ratings

A reasonable question is whether participants’ subjective reports showed differences for
any of our independent variables. These reports serve as ‘ground truth’ for our analysis of
RMSE, and a number of our participants in the follow-up interview mentioned that Drag
was more fatiguing than Tap, and that Long was more fatiguing than Short. However,
our RM-ANOVA of participants’ subjective ratings revealed no statistically significant
results for Task, Distance, or Rest Pattern.
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The lack of a difference between these experimental controls is perhaps counter-intuitive,
but can be explained by the task design — participants performed the target selection task
continuously for about 5 minutes regardless of what condition they were in, as opposed to
performing a fixed number of trials in each block. Nevertheless, these results support the
lack of differences found in RMSE across our experimental controls.

It is worth noting that Jang et al. report in their mid-air validation that some par-
ticipants were more sensitive in their reports of fatigue than others. We also found that
participants varied in their subjective assessments of fatigue. For example, Participant 10
reported fatigue much higher than others, with an average of 3.2, whereas Participant 14
reported significantly lower (µ = .084). While most of our participants reported similar
fatigue ratings throughout the task, the variance may point to some of the difficulty that
the CF model had in accurately predicting fatigue. Average fatigue ratings are presented
by-participant in Table 3.1.

4.2 Participant Interview Feedback

We also examined participant feedback during their post-study interviews to look for trends
in what they felt was most fatiguing about the task. 15 participants suggested that Drag-
ging or Long distances were more fatiguing than Tapping or Short distances respec-
tively, while another 5 participants claimed that Short distances were more fatiguing.
Through looking back to their experiment, we found that participants who kept a constant
speed to complete the tasks reported Long distances to be more fatiguing because they
had to move a longer distance during the experiment. However, some participants tried
to accomplish a task as fast as they could, and clicked much more targets in the Short
distances than in the Long distances. In this case, the total arm movement in the Short
distance was higher than the Long distances, despite a single arm movement in the Long
distances being farther. However, the results of our statistical analysis of participant fa-
tigue ratings do not support these suggestions as we did not find a difference between
Task, Distance, or Rest Pattern. This indicates that in the future experiment, the
number of tasks completed should be controlled.

13 participants mentioned that moving up was more fatiguing than down, and 4 par-
ticipants mentioned that target selections on their left side were more difficult due to our
restriction that participants only use their right arm. Based on our current study design
for participants to report their fatigue levels every 20 seconds, we cannot compare specific
sub-activities within each task (i.e., up/down or left/right drags). However, comparison to
Jang et al.’s validation provides some insight into these differences.
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The range of motion required for on-screen touch interactions is different than for mid-
air pointing. When standing near a display, one has to reach ‘up’ and ‘away’, rather than
pointing ‘towards’ a display. Thus, the arm movements that we observed in our study
are more varied than those Jang et al. used to calibrate their model, and the movements
that were described by participants as being particularly fatiguing were not studied either.
We expect, however, that given additional data collection, the CF model can be improved
further to better predict fatigue for these settings.

The height of the interaction zone also influenced participants’ interpretation of fatigue.
According to several participants whose heights were lower than 160 cm, the pain in the
neck, shoulder and arm muscles increased significantly when the target was out of their
reachable range. They would have to stand on their toes and bend to the side a little
to ensure their hands were high enough to reach the target. This posture was awkward
and more fatiguing than their comfortable operating posture. This statement can lead to a
future requirement for an extended model that may consider extra joints including the neck,
waist and even leg to better understand the general muscle fatigue of large multi-touch
display interaction.
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Chapter 5

Limitations and Future Work

From our evaluation of Jang et al. ’s [1] CF model for mid-air interaction, we may have
an incomplete picture of how fatigue occurs when working with large displays. There
remain several limitations of this work including arm fatigue evoked from force pressure,
and extended fatigue estimation model supporting more complicated and more flexible
interaction. These limitations provide several directions for future works. In the end,
we discuss the current model’s contributions and its future contribution with potential
applications.

5.1 Limitations

The CF model may be applicable to touch interaction on a large display and predict
arm fatigue for large multi-touch display interaction. However, its accuracy can be an
issue that is worth conducting deeper research into. The forces that are present in the
scenario involving the touchscreen is more complicated than during mid-air gestures which
may result in the inability of the CF model to accurately predict arm fatigue for large
multi-touch display by either underestimating or overestimating its effect. Thus, we may
conclude that our result from the validation experiment can place a lower bound on the
accuracy of the model, and future work that addresses limitations is likely to make it even
more accurate in practice.
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5.2 Future Work

There are several improvements that we would like to address as future work.

First, force-sensitive displays have been explored for some time (e.g., [65, 66, 67]) and
are commercially available in large display formats. A limitation of the CF model is that
it relies on Kinect data for the shoulder and elbow joints only, and thus cannot take into
account the force exerted by a user into the display. Predictive models of fatigue may
benefit from incorporating the force data captured from these displays in the future.

Second, interaction with large displays increasingly involves more than just the arm of
the user. Trends towards larger displays mean that users cannot stand in one place and
reach all of the content they need to, they may need to walk around to navigate content
[68], reach up or bend down to access new parts of the display, use bi-manual interaction
techniques, or even kick it [69]. Accounting for the fatigue induced by any of these activities
requires a more complete skeletal model that encompasses more than a single arm. For
example, an upper-body model may be used for two-hand interaction and a whole-body
model may allow participants to walk when interacting.

Finally, we evaluated the CF model’s accuracy only for tapping and dragging; it is likely
to be even less accurate for more complex interactions. For example, Olwal et al., [70]
explored ‘rubbing’ techniques for the multi-touch selection and zooming and noted during
their evaluation that these gestures were especially fatiguing to use. Other techniques often
use arm and wrist rotation as input, which is also unlikely to be fully recognized by the
existing model.

5.3 Contributions

We expect this validated CF model would provide a better understanding of the arm fatigue
on large multi-touch displays and also become a useful tool for evaluating arm fatigue for
various large multi-touch display settings and interactions. To make it clear, we would
like to take an interaction designer who aims for a low-fatigue design for large multi-touch
displays as an example.

Before the CF model was validated, the designer could only design based on the empir-
ical knowledge and iterate upon the design according to potential users’ feedback from the
trials. Such qualitative information may give the designer a general impression of whether
a design is more fatiguing or not. Nevertheless, the designer would not be able to identify
the parts that cause more fatigue to make significant improvements.

29



Now that the CF model is validated for the large multi-touch displays, the designer can
easily evaluate several designs’ performance with more accurate results. With the system
set up, the designer can simply invite potential users to try with the designs, and monitor
their fatigue estimation at the same time. In this way, the estimation of fatigue can directly
provide evidence on whether a certain interaction design is more fatiguing than another
one, and the designer can selectively improve the design through iterations.

5.4 Potential Application: Fatigue-Aware Interface

Figure 5.1: Fatigue-Aware Interface

We believe this CF model can be applied to multiple scenarios in the future. One
potential application for this is the Fatigue-Aware Interface. A fatigue-aware interface
is one type of adaptive user interfaces which can automatically self-adjust its layout and
elements according to the user’s fatigue level.

An adaptive user interface (also called AUI) refers to a user interface that changes its
layout and elements based on the context and requirements of each user [71]. An AUI can
be initially adapted according to the user’s personalized settings, or it may automatically
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change later based on an analysis of the user’s behaviours. Studies about AUI involve
devices such as mobile phones [72] and personal computers, and are conducted in environ-
ments including smart settings [73] and outdoor navigation scenarios [74]. Their method-
ologies include machine-learning-based user modeling [75] and error-based self-improving.

By leveraging the AUI approach, we could propose the design of a fatigue-aware in-
terface, which adapts with the users’ fatigue conditions. Researchers have proved that
a fatigue-related adaptive driving system can provide drivers with sufficient rest when
needed, thereby significantly reducing the adverse effects of driver fatigue and workload
[76]. We expect a fatigue-aware interface can similarly improve user experience with large
multi-touch displays, through providing users with sufficient rest and thus reducing fatigue.

For example, initially, when the user is not experiencing fatigue, all elements on the
interface are aligned by category, so that the user can access any of them within one
touch. When the interface detects that the user’s arm fatigue has reached a relatively
high level and requires rest, it can automatically pack up the elements and organize them
into a hierarchy. Through this adjustment, the operation area will shrink into a smaller
size so that users can reach without large movements. Such layout may require longer
operation procedures but all selections provide users with some time to recover from arm
fatigue. Eventually, when the system identifies that the user’s fatigue levels have decreased
enough, the interface will unpack all of the elements back again. This kind of interface is
theoretically effective to help reduce arm fatigue, and we hope the CF model will contribute
to its implementation.
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Chapter 6

Conclusion

Fatigue has long been a problem for multi-touch displays but designers have had few tools
at their disposal to measure and understand it. To address this gap, we investigated the ac-
curacy of Jang et al.’s mid-air Cumulative Fatigue (CF) model for multi-touch interactions
on a large display. We found that their mid-air model underestimates fatigue, particu-
larly during periods of activity and that it became more inaccurate the longer it was used.
Based on these results, we calibrated the model for touch interactions, achieving error rates
comparable to those for mid-air interaction. Based on our evaluation, we discuss how par-
ticipants’ subjective ratings and interview feedback can further inform the improvement
of the CF model for multi-touch interaction, and a continued need for lightweight tools to
assess fatigue on large, multi-touch displays.

32



References

[1] S. Jang, W. Stuerzlinger, S. Ambike, and K. Ramani, “Modeling cumulative arm
fatigue in mid-air interaction based on perceived exertion and kinetics of arm mo-
tion,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, (New York, NY, USA), pp. 3328–3339, ACM, 2017.

[2] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results
of empirical and theoretical research,” Advances in psychology, vol. 52, pp. 139–183,
1988.

[3] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W. Janssen, D. Lee, K. McCall,
E. Pedersen, K. Pier, J. Tang, and B. Welch, “Liveboard: A large interactive display
supporting group meetings, presentations, and remote collaboration,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’92, (New
York, NY, USA), pp. 599–607, ACM, 1992.

[4] N. Matsushita and J. Rekimoto, “Holowall: Designing a finger, hand, body, and
object sensitive wall,” in Proceedings of the 10th Annual ACM Symposium on User
Interface Software and Technology, UIST ’97, (New York, NY, USA), pp. 209–210,
ACM, 1997.

[5] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous computing research
at parc in the late 1980s,” IBM Syst. J., vol. 38, pp. 693–696, Dec. 1999.

[6] C. Ardito, P. Buono, M. F. Costabile, and G. Desolda, “Interaction with large dis-
plays: A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 3, p. 46, 2015.

[7] P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. Ilmonen, J. Evans,
A. Oulasvirta, and P. Saarikko, “It’s mine, don’t touch!: Interactions at a large
multi-touch display in a city centre,” in Proceedings of the SIGCHI Conference on

33



Human Factors in Computing Systems, CHI ’08, (New York, NY, USA), pp. 1285–
1294, ACM, 2008.

[8] A. Bellucci, A. Malizia, P. Diaz, and I. Aedo, “Don’t touch me: Multi-user annota-
tions on a map in large display environments,” in Proceedings of the International
Conference on Advanced Visual Interfaces, AVI ’10, (New York, NY, USA), pp. 391–
392, ACM, 2010.

[9] T. Ojala, V. Kostakos, H. Kukka, T. Heikkinen, T. Linden, M. Jurmu, S. Hosio,
F. Kruger, and D. Zanni, “Multipurpose interactive public displays in the wild: Three
years later,” Computer, vol. 45, no. 5, pp. 42–49, 2012.

[10] T. Ojala, H. Kukka, T. Lindén, T. Heikkinen, M. Jurmu, S. Hosio, and F. Kruger,
“Ubi-hotspot 1.0: Large-scale long-term deployment of interactive public displays in
a city center,” in Internet and Web Applications and Services (ICIW), 2010 Fifth
International Conference on, pp. 285–294, IEEE, 2010.

[11] H. Brignull and Y. Rogers, “Enticing people to interact with large public displays in
public spaces,” in Proceedings of INTERACT, vol. 3, pp. 17–24, 2003.

[12] J. Müller, F. Alt, D. Michelis, and A. Schmidt, “Requirements and design space for
interactive public displays,” in Proceedings of the 18th ACM international conference
on Multimedia, pp. 1285–1294, ACM, 2010.

[13] M. Bachynskyi, G. Palmas, A. Oulasvirta, J. Steimle, and T. Weinkauf, “Perfor-
mance and ergonomics of touch surfaces: A comparative study using biomechanical
simulation,” in Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’15, (New York, NY, USA), pp. 1817–1826, ACM, 2015.

[14] F. Wang and X. Ren, “Empirical evaluation for finger input properties in multi-
touch interaction,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1063–1072, ACM, 2009.

[15] H.-J. Appell, J. Soares, and J. Duarte, “Exercise, muscle damage and fatigue,” Sports
Medicine, vol. 13, no. 2, pp. 108–115, 1992.

[16] S. A. Dugan and W. R. Frontera, “Muscle fatigue and muscle injury,” Physical
Medicine and Rehabilitation Clinics, vol. 11, no. 2, pp. 385–403, 2000.

34



[17] M. Grujicic, B. Pandurangan, X. Xie, A. Gramopadhye, D. Wagner, and
M. Ozen, “Musculoskeletal computational analysis of the influence of car-seat de-
sign/adjustments on long-distance driving fatigue,” International Journal of Indus-
trial Ergonomics, vol. 40, no. 3, pp. 345–355, 2010.

[18] A. Leme and I. Maia, “Evaluation of fatigue at work in teachers using modern re-
sources in the classroom,” Procedia Manufacturing, vol. 3, pp. 4852–4859, 2015.

[19] S. K. Hunter, J. Duchateau, and R. M. Enoka, “Muscle fatigue and the mechanisms
of task failure,” Exercise and sport sciences reviews, vol. 32, no. 2, pp. 44–49, 2004.
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Appendix A

Materials for Experiment

A.1 Information Form for Validation Experiment

Subject No. :
Gender :
Dominant Hand :
Weight :
Height :
Shoulder Height :
Upper Arm Length :
Lower Arm Length :
Hand Length :
Experiment with touchscreen (years) :
Daily Exercise Level (1 - 5):
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Lifestyle Example PAL

Extremely inactive Cerebral Palsy patient ≤ 1.40
Sedentary Office worker getting little or no exercise 1.40-1.69
Moderately active Construction worker or person running one

hour daily
1.70-1.99

Vigorously active Agricultural worker (non mechanized) or
person swimming two hours daily

2.00-2.40

Extremely active Competitive cyclist ≥ 2.40

Table A.1: 5 Lifestyle based on PAL level

Note: Daily exercise level is for participants to self-report how hard and how frequent
they exercise daily. This scale is borrowed from Physical Activity Level (PAL).

PAL =
TEE24h

BMR

Here TEE24h is defined as a person’s total energy expenditure (TEE) in a 24-hour period,
while BMR is the person’s basal metabolic rate. Usually PAL is divided into five levels as
different lifestyles
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A.2 Borg10 Scale for Subjective Fatigue Report

Score Definition Note

0 Nothing At All No arm fatigue
0.5 Very, Very Weak Just noticeable
1 Very Weak As taking a short walk
2 Weak Light
3 Moderate Somewhat but Not Hard to Go on
4 Somewhat Heavy
5 Heavy Tiring, Not Terribly Hard to Go on
6
7 Very Strong Strenuous. Really Push Hard to Go on
8
9
10 Extremely Strong Extremely strenuous. Worst ever experienced

Table A.2: The Borg10 Scale for Subjective Fatigue
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A.3 Interview Question List

1. What is your general feeling?

2. Comparing the two tasks, Tapping and Draging, which one is more fatiguing?

3. Comparing the two conditions, Short and Long, which one is more fatiguing?

4. Are there any specific conditions that you noticed to be more fatiguing? What is it?

5. Can you totally understand the Borg10 Scale?

6. Do you have any preference to any interaction gestures?

7. To make this task less fatiguing, do you have any suggestions? What is that?
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A.4 NASA Task Load Index

Figure A.1: NASA Task Load Index [2]
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A.5 Required Resources

This research project aims to understand the arm fatigue effect of the large multi-touch
display interactions, which requires studying and analyzing people’s behaviour when inter-
acting with large displays. Equipment and funding are required.

Table A.3 lists all the required equipment for the experiment.

Materials Amount

Large multi-touch display ×1
Microsoft Kinect version 2 ×1
Microsoft Kinect adapter ×1
Laptop with Windows system ×1
Small sandbag (2.5 lb) ×1
Talcum powder ×1
Kitchen towel ×1

Table A.3: Required Equipment for Experiments

Funding is required for the experiment. Participants recruited to participate in the
experiment should be remunerated around $10 - $15 per hour. We recruited 24 participants
for the validation experiment, and the experiment was generally 1.5 hours per person.
Therefore, a budget for around $550 is required. In addition, we have to apply for the
specific ethical approval to recruit participants.
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