320 research outputs found

    Artificial immune system for static and dynamic production scheduling problems

    Get PDF
    Over many decades, a large number of complex optimization problems have brought researchers' attention to consider in-depth research on optimization. Production scheduling problem is one of the optimization problems that has been the focus of researchers since the 60s. The main problem in production scheduling is to allocate the machines to perform the tasks. Job Shop Scheduling Problem (JSSP) and Flexible Job Shop Scheduling Problem (FJSSP) are two of the areas in production scheduling problems for these machines. One of the main objectives in solving JSSP and FJSSP is to obtain the best solution with minimum total completion processing time. Thus, this thesis developed algorithms for single and hybrid methods to solve JSSP and FJSSP in static and dynamic environments. In a static environment, no change is needed for the produced solution but changes to the solution are needed. On the other hand, in a dynamic environment, there are many real time events such as random arrival of jobs or machine breakdown requiring solutions. To solve these problems for static and dynamic environments, the single and hybrid methods were introduced. Single method utilizes Artificial Immune System (AIS), whereas AIS and Variable Neighbourhood Descent (VND) are used in the hybrid method. Clonal Selection Principle (CSP) algorithm in the AIS was used in the proposed single and hybrid methods. In addition, to evaluate the significance of the proposed methods, experiments and One-Way ANOVA tests were conducted. The findings showed that the hybrid method was proven to give better performance compared to single method in producing optimized solution and reduced solution generating time. The main contribution of this thesis is the development of an algorithm used in the single and hybrid methods to solve JSSP and FJSSP in static and dynamic environment

    ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC ALGORITHMS

    Get PDF
    This research proposes a method to solve the adaptive, multi-objective job shop scheduling problem. Adaptive scheduling is necessary to deal with internal and external disruptions faced in real life manufacturing environments. Minimizing the mean tardiness for jobs to effectively meet customer due date requirements and minimizing mean flow time to reduce the lead time jobs spend in the system are optimized simultaneously. An asexual reproduction genetic algorithm with multiple mutation strategies is developed to solve the multi-objective optimization problem. The model is tested for single day and multi-day adaptive scheduling. Results are compared with those available in the literature for standard problems and using priority dispatching rules. The findings indicate that the genetic algorithm model can find good solutions within short computational time

    Review bioinspired approaches in ecoholonic manufacturing systems

    Get PDF
    El incremento de la complejidad de los procesos de fabricación, su carácter distribuido y el uso de las TIC y tecnologías inteligentes, ha determinado que nos debamos de plantear nuevas herramientas con carácter bioinspirado que intenten reconectar los sistemas técnicos con la naturaleza. En el presente trabajo se pretende establecer el estado del arte sobre la ingeniería bioinspirada hacia el diseño de procesos de fabricación sostenibles para su proyección en la ingeniería del ciclo de vida de sistemas de fabricación y complejos de producción industrial que permita concebirlos como naturaleza.The increasing complexity of manufacturing processes, its distributed nature and use of information and smart technologies, determines that we should raise new tools with bio-inspired character for attempt to reconnect technical systems with nature. In the present work it is to establish the state of the art bio-inspired engineering to design sustainable manufacturing processes for screening at the engineering life cycle of manufacturing systems and industrial production complexes that allow them to conceive as nature

    Immunology as a metaphor for computational information processing : fact or fiction?

    Get PDF
    The biological immune system exhibits powerful information processing capabilities, and therefore is of great interest to the computer scientist. A rapidly expanding research area has attempted to model many of the features inherent in the natural immune system in order to solve complex computational problems. This thesis examines the metaphor in detail, in an effort to understand and capitalise on those features of the metaphor which distinguish it from other existing methodologies. Two problem domains are considered — those of scheduling and data-clustering. It is argued that these domains exhibit similar characteristics to the environment in which the biological immune system operates and therefore that they are suitable candidates for application of the metaphor. For each problem domain, two distinct models are developed, incor-porating a variety of immunological principles. The models are tested on a number of artifical benchmark datasets. The success of the models on the problems considered confirms the utility of the metaphor

    Metaheuristics for single and multiple objectives production scheduling for the capital goods industry

    Get PDF
    In the capital goods industry, companies produce plant and machinery that is used to produce consumer products or commodities such as electricity or gas. Typical products produced in these companies include steam turbines, large boilers and oil rigs. Scheduling of these products is difficult due to the complexity of the product structure, which involves many levels of assembly and long complex routings of many operations which are operated in multiple machines. There are also many scheduling constraints such as machine capacity as well as operation and assembly precedence relationships. Products manufactured in the capital goods industry are usually highly customised in order to meet specific customer requirements. Delivery performance is a particularly important aspect of customer service and it is common for contracts to include severe penalties for late deliveries. Holding costs are incurred if items are completed before the due date. Effective planning and inventory control are important to ensure that products are delivered on time and that inventory costs are minimised. Capital goods companies also give priority to resource utilisation to ensure production efficiency. In practice there are tradeoffs between achieving on time delivery, minimising inventory costs whilst simultaneously maximising resource utilisation. Most production scheduling research has focused on job-shops or flow-shops which ignored assembly relationships. There is a limited literature that has focused on assembly production. However, production scheduling in capital goods industry is a combination of component manufacturing (using jobbing, batch and flow processes), assembly and construction. Some components have complex operations and routings. The product structures for major products are usually complex and deep. A practical scheduling tool not only needs to solve some extremely large scheduling problems, but also needs to solve these problems within a realistic time. Multiple objectives are usually encountered in production scheduling in the capital goods industry. Most literature has focused on minimisation of total flow time, or makespan and earliness and tardiness of jobs. In the capital goods industry, inventory costs, delivery performance and machine utilisation are crucial competitive. This research develops a scheduling tool that can successfully optimise these criteria simultaneously within a realistic time. ii The aim of this research was firstly to develop the Enhanced Single-Objective Genetic Algorithm Scheduling Tool (ESOGAST) to make it suitable for solving very large production scheduling problems in capital goods industry within a realistic time. This tool aimed to minimise the combination of earliness and lateness penalties caused by early or late completion of items. The tool was compared with previous approaches in literature and was proved superior in terms of the solution quality and the computational time. Secondly, this research developed a Multi-Objective Genetic Algorithm Scheduling Tool (MOGAST) that was based upon the development of ESOGAST but was able to solve scheduling problems with multiple objectives. The objectives of this tool were to optimise delivery performance, minimise inventory costs, and maximise resource utilisation simultaneously. Thirdly, this research developed an Artificial Immune System Scheduling Tool (AISST) that achieved the same objective of the ESOGAST. The performances of both tools were compared and analysed. Results showed that AISST performs better than ESOGAST on relatively small scheduling problems, but the computation time required by the AISST was several times longer. However ESOGAST performed better than the AISST for larger problems. Optimum configurations were identified in a series of experiments that conducted for each tool. The most efficient configuration was also successfully applied for each tool to solve the full size problem and all three tools achieved satisfactory results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Chaotic Clonal Selection Algorithm and Its Application to Synthesize Multiple-Valued Logic Function

    Get PDF
    In this paper, a chaotic clonal selection algorithm (CCSA) is proposed to synthesize multiple-valued logic (MVL) functions. The MVL function is realized in a multiple-valued sum-of-products expression where product is indicated by MIN and sum by TSUM. The proposed CCSA, in which chaos is incorporated into the clonal selection algorithm to initialize antibodies and maintain the population diversity, is utilized to learn a given target MVL truth table. Furthermore, an adaptive length strategy of antibodies is also introduced to reduce the computational complexity, whereas an improved affinity function enables the algorithm to find less product terms for an MVL function. Simulation results based on a large number of MVL functions demonstrate the efficiency of the proposed method when compared with other traditional methodologies. © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc
    corecore