4 research outputs found

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    Investigation of reconfigurable-accuracy approximate adder designs for image processing applications

    Get PDF
    Ph. D. Thesis.In the last decades, integrated circuits with CMOS technology show progressive scaling challenges of both increased power density and power dissipation. Meanwhile, high-performance requirements of current and future application operations show rapid demands of computing resources like power. This design conflict has pushed much effort to search for high performance and energy efficient design approach, such as approximate computing. Approximate computing exploits the error resilience of compute- intensive applications such as image processing applications to implement approximation design techniques with different levels of abstractions and scalability. The basic principle is to relax the strict accuracy requirements in favour of a lower design complexity, thereby achieving more computational performance (i.e., speed) and energy saving. The adder arithmetic unit is considered one of the essential computational blocks in most of the applications. As such, much effort has explored new designs of an efficient approximate adder design. This thesis presents an investigation into design enhancement, novel approximate adder designs and implementation approaches. The first approach introduces a modification to the error detection technique of a popular configurable-accuracy approximate adder design. The proposed lightweight error detection technique reduces the required gates of the error detection circuit, thus, mitigating the design area overhead. Furthermore, at the error correction process of the adder, we have proposed an extensive error detection while activating more than one correction stage concurrently. As a result, this ensures achieving an optimum accuracy of outputs for the worst case of quality requirements. In general, approximate (speculative) adder designs use the seg- mentation technique to divide the adder into multiple short length sub-adders which operate in parallel. Hence, this would limit the long chains of carry propagation and result in a better performance operations. However, the use of overlapped parts of sub-adders regarding a better carry speculation and then more accuracy be- comes a significant challenge of a large design area overhead. The second approach continues mitigating this challenge by present- ing a novel and simpler adder dividing technique to a number of sub-adders. The new method uses what is known as the carry-kill signal for both limiting the carry propagation and applying adder segmentation. Further, between every two adjacent sub-adders, one AND gate and one XOR gate are used for carry speculation and error (i.e., carry propagation) detection respectively. Thus, a significant reduction of the design overhead has been achieved, yet, with acceptable levels of output results accuracy. In the third final approach, simple logic OR gates are used to build the approximate adder while compensating the conventional full adders operation. The resulted approximate adder design presents very low complex- ity, high speed, and low power consumption. Furthermore, instead of augmenting error recovery circuit, short bit-length exact adders are used as correction stages to control the general level of output quality (i.e., without error detection overhead). At the final correc- tion stage, the proposed design would operate the same as an exact adder. To validate the efficiency of these approaches, a number of adders with different bit-widths are designed and synthesized showing considerable reductions in the critical delay, silicon area and more savings in energy consumption, compared to other existing ap- proaches. In addition to acceptable levels or output errors, which are extensively analysed for each proposed design. In this study, the proposed configurable adder designs exhibit energy/quality trade-offs at a different number of correction stages. These trade-offs can be effectively exploited to implement adders in applications, where energy can be gracefully minimised within the envelope of quality requirements. As such, designs implemen- tation in an image processing application known as Gaussian blur filter was introduced, demonstrating the loss in the image quality at each error correction stage. The output images showed promis- ing results to use the proposed designs for more energy-efficient applications, where output quality requirements can be relaxed.Mutah Universit
    corecore