772 research outputs found

    A Domain Analysis to Specify Design Defects and Generate Detection Algorithms

    Get PDF
    Quality experts often need to identify in software systems design defects, which are recurring design problems, that hinder development\ud and maintenance. Consequently, several defect detection approaches\ud and tools have been proposed in the literature. However, we are not\ud aware of any approach that defines and reifies the process of generating\ud detection algorithms from the existing textual descriptions of defects.\ud In this paper, we introduce an approach to automate the generation\ud of detection algorithms from specifications written using a domain-specific\ud language. The domain-specific is defined from a thorough domain analysis.\ud We specify several design defects, generate automatically detection\ud algorithms using templates, and validate the generated detection\ud algorithms in terms of precision and recall on Xerces v2.7.0, an\ud open-source object-oriented system

    Code smells detection and visualization: A systematic literature review

    Full text link
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.Comment: submitted to ARC

    Code smells detection and visualization: A systematic literature review

    Get PDF
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been cataloged with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches, several methods are used, such as city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non-trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.info:eu-repo/semantics/acceptedVersio

    Streamlining code smells: Using collective intelligence and visualization

    Get PDF
    Context. Code smells are seen as major source of technical debt and, as such, should be detected and removed. Code smells have long been catalogued with corresponding mitigating solutions called refactoring operations. However, while the latter are supported in current IDEs (e.g., Eclipse), code smells detection scaffolding has still many limitations. Researchers argue that the subjectiveness of the code smells detection process is a major hindrance to mitigate the problem of smells-infected code. Objective. This thesis presents a new approach to code smells detection that we have called CrowdSmelling and the results of a validation experiment for this approach. The latter is based on supervised machine learning techniques, where the wisdom of the crowd (of software developers) is used to collectively calibrate code smells detection algorithms, thereby lessening the subjectivity issue. Method. In the context of three consecutive years of a Software Engineering course, a total “crowd” of around a hundred teams, with an average of three members each, classified the presence of 3 code smells (Long Method, God Class, and Feature Envy) in Java source code. These classifications were the basis of the oracles used for training six machine learning algorithms. Over one hundred models were generated and evaluated to determine which machine learning algorithms had the best performance in detecting each of the aforementioned code smells. Results. Good performances were obtained for God Class detection (ROC=0.896 for Naive Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature Envy (ROC=0.570 for Random Forrest). Conclusions. Obtained results suggest that Crowdsmelling is a feasible approach for the detection of code smells, but further validation experiments are required to cover more code smells and to increase external validityContexto. Os cheiros de código são a principal causa de dívida técnica (technical debt), como tal, devem ser detectados e removidos. Os cheiros de código já foram há muito tempo catalogados juntamente com as correspondentes soluções mitigadoras chamadas operações de refabricação (refactoring). No entanto, embora estas últimas sejam suportadas nas IDEs actuais (por exemplo, Eclipse), a deteção de cheiros de código têm ainda muitas limitações. Os investigadores argumentam que a subjectividade do processo de deteção de cheiros de código é um dos principais obstáculo à mitigação do problema da qualidade do código. Objectivo. Esta tese apresenta uma nova abordagem à detecção de cheiros de código, a que chamámos CrowdSmelling, e os resultados de uma experiência de validação para esta abordagem. A nossa abordagem de CrowdSmelling baseia-se em técnicas de aprendizagem automática supervisionada, onde a sabedoria da multidão (dos programadores de software) é utilizada para calibrar colectivamente algoritmos de detecção de cheiros de código, diminuindo assim a questão da subjectividade. Método. Em três anos consecutivos, no âmbito da Unidade Curricular de Engenharia de Software, uma "multidão", num total de cerca de uma centena de equipas, com uma média de três membros cada, classificou a presença de 3 cheiros de código (Long Method, God Class, and Feature Envy) em código fonte Java. Estas classificações foram a base dos oráculos utilizados para o treino de seis algoritmos de aprendizagem automática. Mais de cem modelos foram gerados e avaliados para determinar quais os algoritmos de aprendizagem de máquinas com melhor desempenho na detecção de cada um dos cheiros de código acima mencionados. Resultados. Foram obtidos bons desempenhos na detecção do God Class (ROC=0,896 para Naive Bayes) e na detecção do Long Method (ROC=0,870 para AdaBoostM1), mas muito mais baixos para Feature Envy (ROC=0,570 para Random Forrest). Conclusões. Os resultados obtidos sugerem que o Crowdsmelling é uma abordagem viável para a detecção de cheiros de código, mas são necessárias mais experiências de validação para cobrir mais cheiros de código e para aumentar a validade externa

    A model-driven approach to broaden the detection of software performance antipatterns at runtime

    Full text link
    Performance antipatterns document bad design patterns that have negative influence on system performance. In our previous work we formalized such antipatterns as logical predicates that predicate on four views: (i) the static view that captures the software elements (e.g. classes, components) and the static relationships among them; (ii) the dynamic view that represents the interaction (e.g. messages) that occurs between the software entities elements to provide the system functionalities; (iii) the deployment view that describes the hardware elements (e.g. processing nodes) and the mapping of the software entities onto the hardware platform; (iv) the performance view that collects specific performance indices. In this paper we present a lightweight infrastructure that is able to detect performance antipatterns at runtime through monitoring. The proposed approach precalculates such predicates and identifies antipatterns whose static, dynamic and deployment sub-predicates are validated by the current system configuration and brings at runtime the verification of performance sub-predicates. The proposed infrastructure leverages model-driven techniques to generate probes for monitoring the performance sub-predicates and detecting antipatterns at runtime.Comment: In Proceedings FESCA 2014, arXiv:1404.043
    corecore