36,271 research outputs found

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Neural Network Modelling of Constrained Spatial Interaction Flows

    Get PDF
    Fundamental to regional science is the subject of spatial interaction. GeoComputation - a new research paradigm that represents the convergence of the disciplines of computer science, geographic information science, mathematics and statistics - has brought many scholars back to spatial interaction modeling. Neural spatial interaction modeling represents a clear break with traditional methods used for explicating spatial interaction. Neural spatial interaction models are termed neural in the sense that they are based on neurocomputing. They are clearly related to conventional unconstrained spatial interaction models of the gravity type, and under commonly met conditions they can be understood as a special class of general feedforward neural network models with a single hidden layer and sigmoidal transfer functions (Fischer 1998). These models have been used to model journey-to-work flows and telecommunications traffic (Fischer and Gopal 1994, Openshaw 1993). They appear to provide superior levels of performance when compared with unconstrained conventional models. In many practical situations, however, we have - in addition to the spatial interaction data itself - some information about various accounting constraints on the predicted flows. In principle, there are two ways to incorporate accounting constraints in neural spatial interaction modeling. The required constraint properties can be built into the post-processing stage, or they can be built directly into the model structure. While the first way is relatively straightforward, it suffers from the disadvantage of being inefficient. It will also result in a model which does not inherently respect the constraints. Thus we follow the second way. In this paper we present a novel class of neural spatial interaction models that incorporate origin-specific constraints into the model structure using product units rather than summation units at the hidden layer and softmax output units at the output layer. Product unit neural networks are powerful because of their ability to handle higher order combinations of inputs. But parameter estimation by standard techniques such as the gradient descent technique may be difficult. The performance of this novel class of spatial interaction models will be demonstrated by using the Austrian interregional traffic data and the conventional singly constrained spatial interaction model of the gravity type as benchmark. References Fischer M M (1998) Computational neural networks: A new paradigm for spatial analysis Environment and Planning A 30 (10): 1873-1891 Fischer M M, Gopal S (1994) Artificial neural networks: A new approach to modelling interregional telecommunciation flows, Journal of Regional Science 34(4): 503-527 Openshaw S (1993) Modelling spatial interaction using a neural net. In Fischer MM, Nijkamp P (eds) Geographical information systems, spatial modelling, and policy evaluation, pp. 147-164. Springer, Berlin

    Driving Scene Perception Network: Real-time Joint Detection, Depth Estimation and Semantic Segmentation

    Full text link
    As the demand for enabling high-level autonomous driving has increased in recent years and visual perception is one of the critical features to enable fully autonomous driving, in this paper, we introduce an efficient approach for simultaneous object detection, depth estimation and pixel-level semantic segmentation using a shared convolutional architecture. The proposed network model, which we named Driving Scene Perception Network (DSPNet), uses multi-level feature maps and multi-task learning to improve the accuracy and efficiency of object detection, depth estimation and image segmentation tasks from a single input image. Hence, the resulting network model uses less than 850 MiB of GPU memory and achieves 14.0 fps on NVIDIA GeForce GTX 1080 with a 1024x512 input image, and both precision and efficiency have been improved over combination of single tasks.Comment: 9 pages, 7 figures, WACV'1
    • …
    corecore