3 research outputs found

    Applying Algebraic Approaches for Modeling Workflows and their Transformations in Mobile Networks

    Get PDF
    In emergency scenarios we can obtain a more effective coordination among team members, each of them equipped with hand-held devices, through the use of workflow management software. Team members constitute a Mobile Ad-hoc NETwork (MANET), whose topology both influences and is influenced by the workflow. In this paper we propose an algebraic approach for modeling workflow progress as well as its modifications as required by topology transformations. The approach is based on Algebraic Higher-Order Nets and sees both workflows and topologies as tokens, allowing their concurrent modification

    Subtyping for Hierarchical, Reconfigurable Petri Nets

    Full text link
    Hierarchical Petri nets allow a more abstract view and reconfigurable Petri nets model dynamic structural adaptation. In this contribution we present the combination of reconfigurable Petri nets and hierarchical Petri nets yielding hierarchical structure for reconfigurable Petri nets. Hierarchies are established by substituting transitions by subnets. These subnets are themselves reconfigurable, so they are supplied with their own set of rules. Moreover, global rules that can be applied in all of the net, are provided
    corecore