38,047 research outputs found

    Software component testing : a standard and the effectiveness of techniques

    Get PDF
    This portfolio comprises two projects linked by the theme of software component testing, which is also often referred to as module or unit testing. One project covers its standardisation, while the other considers the analysis and evaluation of the application of selected testing techniques to an existing avionics system. The evaluation is based on empirical data obtained from fault reports relating to the avionics system. The standardisation project is based on the development of the BC BSI Software Component Testing Standard and the BCS/BSI Glossary of terms used in software testing, which are both included in the portfolio. The papers included for this project consider both those issues concerned with the adopted development process and the resolution of technical matters concerning the definition of the testing techniques and their associated measures. The test effectiveness project documents a retrospective analysis of an operational avionics system to determine the relative effectiveness of several software component testing techniques. The methodology differs from that used in other test effectiveness experiments in that it considers every possible set of inputs that are required to satisfy a testing technique rather than arbitrarily chosen values from within this set. The three papers present the experimental methodology used, intermediate results from a failure analysis of the studied system, and the test effectiveness results for ten testing techniques, definitions for which were taken from the BCS BSI Software Component Testing Standard. The creation of the two standards has filled a gap in both the national and international software testing standards arenas. Their production required an in-depth knowledge of software component testing techniques, the identification and use of a development process, and the negotiation of the standardisation process at a national level. The knowledge gained during this process has been disseminated by the author in the papers included as part of this portfolio. The investigation of test effectiveness has introduced a new methodology for determining the test effectiveness of software component testing techniques by means of a retrospective analysis and so provided a new set of data that can be added to the body of empirical data on software component testing effectiveness

    Decision Making for Rapid Information Acquisition in the Reconnaissance of Random Fields

    Full text link
    Research into several aspects of robot-enabled reconnaissance of random fields is reported. The work has two major components: the underlying theory of information acquisition in the exploration of unknown fields and the results of experiments on how humans use sensor-equipped robots to perform a simulated reconnaissance exercise. The theoretical framework reported herein extends work on robotic exploration that has been reported by ourselves and others. Several new figures of merit for evaluating exploration strategies are proposed and compared. Using concepts from differential topology and information theory, we develop the theoretical foundation of search strategies aimed at rapid discovery of topological features (locations of critical points and critical level sets) of a priori unknown differentiable random fields. The theory enables study of efficient reconnaissance strategies in which the tradeoff between speed and accuracy can be understood. The proposed approach to rapid discovery of topological features has led in a natural way to to the creation of parsimonious reconnaissance routines that do not rely on any prior knowledge of the environment. The design of topology-guided search protocols uses a mathematical framework that quantifies the relationship between what is discovered and what remains to be discovered. The quantification rests on an information theory inspired model whose properties allow us to treat search as a problem in optimal information acquisition. A central theme in this approach is that "conservative" and "aggressive" search strategies can be precisely defined, and search decisions regarding "exploration" vs. "exploitation" choices are informed by the rate at which the information metric is changing.Comment: 34 pages, 20 figure

    Conceptualising and interpreting reliability

    Get PDF

    Improving randomness characterization through Bayesian model selection

    Full text link
    Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We have applied our method to an experimental device based on the process of spontaneous parametric downconversion, implemented in our laboratory, to confirm that it behaves as a genuine quantum random number generator (QRNG). As our approach relies on Bayesian inference, which entails model generalizability, our scheme transcends individual sequence analysis, leading to a characterization of the source of the random sequences itself.Comment: 25 page
    • …
    corecore