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Preface 
 
This report is the principal outcome of a conceptual analysis project focusing on 
assessment reliability commissioned by the Office of the Qualifications and 
Examinations Regulator (Ofqual) in January 2009. As required, the analysis is 
contextualised with reference to the kinds of tests, examinations and qualifications 
that are common in the UK.  

The specific requirements for the project were to: 

 identify different approaches to conceptualising ‘truth’ and ‘error’ within 
reliability theory – alternative models of reliability 

 identify different approaches to estimating reliability, highlighting: 
o the assumptions that they make 
o their basis in models of reliability 
o their strengths and weaknesses 

 consider how best to evaluate estimates of reliability, based on different 
approaches, given complications such as the following: 

o that not all sources of random error are likely to be accounted for 
o that other (systematic) sources of error will be unaccounted for 
o that results may be used for a variety of different purposes 

 
The following definition of ‘reliability’ was given: 

Reliability refers to the consistency of outcomes that would be observed from an 
assessment process were it to be repeated. High reliability means that broadly the 
same outcomes would arise. Unreliability can be attributed to ‘random’, 
unsystematic causes of error in assessment results. Given the general parameters 
and controls that have been established for an assessment process – including test 
specification, administration conditions, approach to marking, linking design and 
so on – (un)reliability concerns the impact of the particular details that do happen 
to vary from one assessment to the next for whatever reason. 

 
A variety of information sources were consulted during production of this report. 
These include original theoretical expositions, seminal texts on reliability, academic 
journals, Ofqual itself, awarding bodies, and individual academics and practitioners.  
In the case of academic journals, our literature review has been selective rather than 
comprehensive, and we have appealed to a number of online library access tools to aid 
with this. Whenever possible we have accessed the original source material.  
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Conceptualising and interpreting reliability 

1    Introduction 
 
1.1 Tests, examinations and qualifications in the UK 
 
There are currently over 120 awarding bodies operating in the UK’s market-driven 
qualifications system, between them offering over 6000 nationally accredited 
academic and vocational/occupational qualifications (for details see the National 
Database of Accredited Qualifications: www.accreditedqualifications.org.uk). The 
system is regulated in England by the Office of the Qualifications and Examinations 
Regulator (Ofqual), in Wales by the Department for Children, Education, Lifelong 
Learning and Skills (DCELLS), in Northern Ireland by the Council for the 
Curriculum, Examinations and Assessments (CCEA), and in Scotland by the Scottish 
Qualifications Authority (SQA). 
 
In the academic arena, the principal qualifications for upper secondary school students 
are the General Certificate of Secondary Education (GCSE), normally taken at the 
end of Year 11 (16 year olds) and the General Certificate of Education Advanced 
Level (A level), typically taken as a school leaving examination at the end of Year 13 
(18 year olds). These qualifications are currently offered by three awarding bodies in 
England – the Assessment and Qualifications Alliance (AQA), Edexcel, and Oxford, 
Cambridge and RSA Examinations (OCR). There is a single awarding body in each of 
Wales and Northern Ireland, respectively the Welsh Joint Education Committee 
(WJEC) and the CCEA. In Scotland, the national qualifications system comprises 
Standard Grade, Highers and Advanced Highers, offered by the SQA. In all 
countries, qualifications are available in a wide variety of traditional and less 
traditional subjects, including, for example, history, French, mathematics, business 
studies, ICT, art and design, citizenship studies, drama, psychology. Examinations are 
typically modular, with individual units often assessed in different ways within a 
single examination. Tests might comprise multiple choice questions, delivered on 
paper or online, structured response questions or essays, or could take the form of a 
practical test or an oral interaction with an assessor. Course work might also be 
included in the final performance profile that eventually leads to a grade.  
 
In the vocational arena, General Vocational Qualifications (GVQ) and their Scottish 
equivalents (SVQ), introduced just over 20 years ago, are available in a number of 
different employment areas, addressing a growing variety of occupations. These 
include, for example, hotel management, child care, engineering, music direction, 
equine transport, glass manufacture, shift management, law and legal work, dementia 
care, gemmology, to name but a handful. The salient feature of assessment here is that 
it is workplace based. Assessors observe candidates as they perform relevant tasks – 
tasks that would be, or might be, required to be performed in the course of carrying 
out the occupation concerned. The assessors’ observations and judgements contribute 
to a portfolio of performance evidence, that is then subject to internal and external 
verification, by verifiers (moderators) whose standards of judgement are assumed to 
be equivalent after participation in standardisation exercises of one type or another.  

The recently introduced Diploma merges elements of academic and vocational 
achievements in a single qualification, comprising three components: principal 
learning, generic learning and additional and/or specialist learning (ASL). Principal 
learning is specific to the ‘Line of Learning’ that a learner chooses, for example 
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creative and media, hair and beauty studies, science, construction and the built 
environment, hospitality, engineering. Generic learning is common across all Diploma 
Lines of Learning. It includes a core of skills that employers and higher education 
demand, and requires learners to develop their organisational, research and 
presentation skills through completion of a project – for example a performance or 
written report – in addition to undergoing a minimum of 10 days' work experience. 
Additional and/or specialist learning gives learners the opportunity to deepen or 
broaden their learning. The component outcomes – often stand-alone qualifications – 
are aggregated to form the full Diploma. 

Underneath this vast and still growing qualifications system, the National Curriculum 
assessment programme continues in England. This was introduced into primary and 
early secondary education in the late 1980s, and is an annual census of pupil 
attainment at key stages in the school system. Managed by the Qualifications and 
Curriculum Development Authority (QCDA), the programme essentially ‘certificates’ 
every pupil as that pupil progresses through the key stages. The results of the 
certification serve multiple purposes, from reporting learning progress to parents and 
teachers to monitoring the effectiveness of schools, authorities and the national 
education system as a whole. The programme has undergone a number of evolutions 
since its introduction, and currently focuses on the assessment of English and 
mathematics at the end of Year 2 (Key Stage 1), and English, mathematics and 
science at the end of Year 6 (Key Stage 2). At Key Stage 1, and for science attainment 
at Key Stage 2, pupil attainment is currently assessed through teacher judgement, 
supported by in-class use of National Curriculum tasks. At Key Stage 2 mathematics 
attainment is assessed each year using two national pen and paper tests (both taken by 
each pupil), while English is assessed using a single reading test and two writing 
assignments, one short and one extended.  
 
This report explores the issue of assessment reliability against this complex reality. 
The project requirement was to consider different conceptualisations of reliability, 
interpreting and evaluating these with particular reference to the kinds of tests, 
examinations and qualifications common in the UK. Questions of interest are: 
 
 How has assessment reliability been conceptualised? 
 What are the technical assumptions associated with one or other conceptualisation? 
 Are there particular conceptualisations that serve particular assessment purposes 

more adequately than others? 
 What are the consequences of adopting an inappropriate conceptualisation for 

investigating and reporting reliability?   
 
Before addressing these questions, let us first remind ourselves why assessment 
reliability, and indeed assessment validity, is such an issue.    
 
1.2  The nature of educational assessment 
 
Educational assessment is essentially to do with gathering evidence about what 
individuals know, understand, think and can do, with some particular purpose in 
mind, typically placement and certification. We can assess knowledge, skills and 
attitudes informally, through interaction, observation and questioning over some more 
or less lengthy period of time, or formally, through use of interviews, tasks, tests, 
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questionnaires and product evaluations. And individuals can assess themselves, or be 
assessed by others, including peers, teachers and external agencies. But what evidence 
do we look for when we engage in educational assessment?  Where do we look for it?  
How exactly should we gather it, and how will we know when we have enough? The 
answers to these questions depend very much on the nature of what is being assessed, 
what the context for assessment is, who is doing the assessment, and why it is being 
carried out. Why is this apparently simple process so fraught with difficulty? 
 
The defensible assessment of intellectual skills and abilities has always been, and will 
continue to be, a challenging endeavour, no matter the form of assessment. This is 
because the skills and abilities that we are trying to measure are often difficult to 
define in any absolute sense, and cannot be directly observed. It is these properties 
that distinguish them from more readily measurable physical properties like height 
and weight. Because they are not directly observable we are constrained to employ a 
number of different strategies in efforts to elicit observable evidence of their 
existence. We pose questions to individuals – questions whose answers provide us 
with some relevant information about their subject knowledge and ability. Or we give 
instructions – instructions that require particular observable behaviours to be 
deployed, behaviours that tell us something about conceptual understanding or skills 
development.  
 
The instruments of assessment might be informal task-based exercises conducted 
during normal class time. Examples would be producing a piece of fictional writing in 
English, sketching a portrait in art, setting up some laboratory equipment in physics, 
or crafting a soup ladle in woodwork. Alternatively, they might be conventional tests, 
timed or untimed, comprising a set of obligatory ‘atomistic’ test items (usually in 
objective format), a small number of structured or essay questions with choice 
options, or an oral interaction with peers or an assessor. The test might focus on a 
particular curriculum topic in depth, or thinly sample the curriculum as a whole. 
Alternatively, it might involve a lengthy practical demonstration of knowledge and 
skill. The test might be a stand-alone device, such as a standardised reading test used 
by teachers in their own classrooms, or a ‘significant’ task-based assessment carried 
out in the workplace under assessor observation. Or it could simply be one component 
in a multi-component external examination, an objective test perhaps. As noted 
earlier, other components might include an essay paper, a structured question paper, a 
practical demonstration or an oral test, the variety of component depending on the 
nature of the subject concerned.  
 
The products of the questions and tasks – the answers and the behaviours – are 
marked or rated, and, where relevant, summarized in some way, typically as total or 
average test scores. The outcome might be an immediate decision for the individual 
concerned: an end-of-term ‘reading age’ based on the result of a standardised reading 
test, a classification into a ‘performance percentile’ for the class or entire school, 
based on the results of a French oral test, an attainment level decision based on 
performances in National Curriculum mathematics assessments, or a skills mastery 
decision based on the individual’s performance in the practical workplace task. 
Alternatively, the test result could simply be recorded for use later, perhaps for 
contribution to a portfolio, or to add to the results of a series of similar standalone 
tests held over the year, whose combined results might be summarised to furnish the 
basis for an evaluative decision about achievement, progress and future placement. If 
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part of a multi-component examination, the test result might be adjusted in some way, 
and weighted, before contributing to a global examination mark, to which cut scores 
would be applied to produce grade classifications (see Robinson, 2007, for an 
overview of the complexity of results processing in the academic examinations 
system in England).  
 
In principle, testing might appear to be a quite straightforward exercise. But numerous 
extraneous influences impact on the process, introducing variability that ultimately 
contributes to inconsistency and ‘error’ in the measurement results. The apparently 
straightforward task of assessing subject knowledge is already a difficult exercise. We 
can ask a student to tell us the date of some famous battle in English history. We can 
ask the name of the king of England at the time. We can ask how many soldiers died 
in that battle. And so on. Students might answer all three questions correctly or all 
three incorrectly. They might answer one or two correctly and the third not. We might 
ask another 20 similar questions, perhaps on the same general theme. But what would 
the outcome of the questioning then tell us about the individual’s historical 
knowledge? If we added some questions that required the student to reason about 
events, perhaps to explain why this or that strategy was adopted by the commanding 
officer, we might change the picture again. If we had asked the same questions the 
day before, or the day after, or the following week, would the outcome have been the 
same in general, and for every individual student?  What difference would it have 
made had the students’ knowledge been explored through an examination comprising 
essay questions? Would students have been able to show more evidence of their 
relevant knowledge this way? Either way, what influence would individual markers 
have had on the assessment results? 
 
Skills assessment can be more straightforward, or equally challenging, depending on 
the nature of the skills being assessed. For example, if we want to know whether a 
candidate in a chemistry examination can weigh a gram of copper sulphate crystals to 
the nearest milligram, we can simply ask the candidate to do that and judge 
accordingly. But what if this is just one small task within a longer laboratory 
experiment? We might devise a checklist, and have examiners note which of the 
various steps are completed adequately according to some given set of criteria.  If not 
all the tasks are satisfactorily completed by the candidate how do we use the overall 
profiles of successes and failures to come to a decision about laboratory skills for this 
candidate on this particular experiment? And how far could we generalise the result to 
the broader domain of ‘chemistry laboratory skills’ at the level concerned? How 
confident could we be that the generalisation is defensible? What relative importance 
might we give lab skills as opposed to theoretical chemistry knowledge within a 
global chemistry examination?  How might we judge how well we had measured each 
aspect? And what can we say about the meaning and value of the combined result? 
This, of course, is where we need to consider issues of validity and reliability.      
 
1.3  Reliability and validity 
 
In the context of academic testing and examining, as noted by Wood (1991, Chapter 
12), assessment validity is essentially to do with how appropriately we operationalise 
our definitions of subject knowledge, ability and skill in practice, in the form of 
assessment (measurement) tools. The principal concerns here are content validity 
(how well the content of a test or examination relates to the curriculum being assessed 
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in terms both of relevance and coverage) and construct validity (the degree to which a 
test or examination elicits evidence of the particular ability or skill that is in principle 
being assessed). In vocational assessment predictive validity is clearly also important. 
This is because vocational qualifications serve not only as attestations of an 
individual’s current levels of work-relevant knowledge and skills but also as direct 
indicators of future occupational competence. [See the seminal text by Messick, 1989, 
for further discussion of validity.]  
 
Reliability has to do with how well we are able to measure what we set out to measure 
using the given tools, and how well we might measure the same thing if our tools or 
procedures were to be changed in some way. It is important to remember here that 
reliability is itself a contributor to validity. Together the two aspects contribute to the 
‘dependability’, or quality, of measurements.  
 
Any health professional measuring an individual’s height would use a wall-mounted 
stadiometer for this purpose, not a flexible tape measure. The height of the individual, 
easily defined, is what is being measured. The choice of an appropriate tool for the 
purpose, along with correct use of this tool, should guarantee a high degree of 
validity. What about measurement reliability? The height will be measured well, but 
not necessarily perfectly, because human beings are not inanimate objects. How 
carefully the measurer sets out to measure the height will partly depend on the 
purpose for which the height measurement is required. For some purposes, general 
medical monitoring perhaps, a height measurement to the nearest centimetre could be 
more than sufficient. For other purposes this might not be an adequate degree of 
precision. For example, should the individual concerned be a participant in some 
pharmaceutical trial, perhaps being monitored for the effects of growth hormone 
administration, then the measurement might need to be more precise than this, 
perhaps accurately estimated to within a millimetre. In this case, special care would 
need to be taken that the individual being measured should stand with the same 
posture each time, feet flat on the floor, straight back, muscles relaxed, since changes 
in these variables could well lead to different height readings. Recognising this, 
several different readings might be taken, and averaged for greater security. So, even 
for something as apparently straightforward as height measurement there are factors 
that affect the measurement adversely, which if uncontrolled could lead to a non-valid 
measurement, that is a height measurement that is too imprecise for the purpose 
intended.     
 
So it is with educational assessment and test results. Except that the challenges of 
quality measurement are greater in this context. This is partly because, as noted 
earlier, even when we have a workable definition the knowledge, ability or skill being 
assessed cannot always be directly measured, as height can. To find out what 
individuals can do in mathematics we have to ask them questions, and give them 
problems to solve. If the questions contained in the test are clearly mathematical, and 
if the mathematics in the test is appropriate to the age of the individuals being 
assessed (that is to the curriculum being taught), then we would consider the test to be 
‘valid’, i.e. appropriate. Unless, that is, there is a lot of reading involved, as in word 
problems. For in this case the ability to read could interfere with demonstration of 
mathematics ability, especially for weak readers, and ‘cloud’ the assessment of 
mathematics. We then risk producing non-valid measurements of mathematics ability 
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for poor readers. The test would be said to be ‘biased’ in favour of good readers (see 
Ackerman, 1991, for further examples), and its validity therefore compromised.     
 
Now what about reliability, the ‘how well’ of measurement? Can we assume that the 
test would give the same result for the same individual whenever, wherever and 
however it might be used? Common sense would suggest not. It is a fact of life that 
pupils and examination candidates rarely produce consistent performances in a test. 
The most able might do so, as might the least able, but most do not. Individuals might 
answer one question correctly and the next wrongly, and so on, providing a 
fluctuating profile of success from beginning to end. What one person finds easy 
another might find hard, and vice versa. This interaction between test takers and 
questions or tasks, this inconsistency in performance, is a potentially important 
contributor to unreliability in assessment.  
 
We all know that children, like adults, make mistakes in calculation, even when they 
know how to solve a particular problem. And the younger and the less able the pupils 
the more likely they are to forget learned facts from one day to another. Some pupils 
might have covered a particular topic in school the day before, while others might 
have left it behind weeks earlier. If one class has covered fractions more recently than 
another, for example, then we might expect the pupils in that class to perform better 
than those in the other on fractions items. Even if we accept that once taught and 
mastered such skills are there for life, recent practice could provide an advantage in a 
testing context. Then again, while all classes might have covered the same material in 
the same period, perhaps one teacher has been particularly effective in one particular 
area, and this could show up in better item scores in that area for that teacher’s pupils. 
These are just two possible examples of school/class effects that might lead to 
inconsistency in pupils’ performances on different test questions.  
 
More personal factors are also relevant in this sense. These include the particular 
subject interests of individuals that affect both their learning and their assessment 
motivation. Some test takers more than others become flustered with anxiety during 
formal testing sessions. Others simply refuse to make the effort to show what they can 
do. Extraneous factors can also have an unpredictable influence, like distractions 
outside the classroom window, a heat wave on the day of testing in June, or other 
examinees leaving the examination room early. Such factors potentially affect young 
adults undergoing academic or vocational assessment, in the school or in the 
workplace, as much as pupils in primary classrooms. They are all potential 
contributors to inconsistency in measurement, many of which are beyond our control. 
 
These are just some of the factors that can affect an individual’s performance on a 
single test. If we consider any test as simply a ‘container’ for test questions, we can 
imagine that if we replaced some of the questions in that container with others we 
might see different outcomes for the same individuals. Yet, compared with the efforts 
made by awarding bodies to minimise the potential influence of marker or assessor 
differences on test outcomes (for a recent comprehensive review see, for example, 
Meadows and Billington, 2005), this issue of question effects seems to have received 
rather little attention.  
 
But what exactly is ‘reliability’? How is it defined? How can it be measured? How do 
we know when we have enough of it? How can it be increased? In Chapter 2 we offer 
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a brief overview of the evolution in reliability conceptualisation, since first 
introduction of the concept over a hundred years ago to the present day, before 
moving on in later sections to consider how reliability estimation might most 
appropriately be approached in the many different kinds of testing context that operate 
in the 21st century in England. 
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2    The evolution in reliability conceptualisation 
 
The material in this chapter is likely to be familiar to any reader with more than a 
passing acquaintance with measurement theory. Even so we feel that a brief overview 
of the evolution of the concepts of measurement, and particularly of reliability, over 
the course of the 20th century will be helpful in locating where we are now and, to 
some extent, why we are where we are. The following exposition will require that we 
resort from time to time to mathematical notation, which we nonetheless try to limit to 
a minimum. 
 
2.1  Observed scores, true scores and measurement error 
 
When we use a single test with a group of individuals the result is a set of scores, one 
score for every individual tested on each question in the test. There will be variation 
in these scores, some individuals producing high scores for most questions, others low 
scores for most questions, with typically many in-between, showing a mixed picture. 
These are scores that we can see. For this reason they are called ‘observed scores’, 
and the variation in them is ‘observed score variation’. Genuine differences among 
the individuals in terms of what is being assessed will normally explain most of the 
variation in scores. This ‘genuine’, or ‘valid’, score variation is technically called 
‘true score’ variation. But, as noted in Chapter 1, there are always other influences at 
play in testing situations that also contribute to score variation, such as the conditions 
of testing (temperature in the room, amount of noise disturbance, the number of 
students finishing early and distracting others), the nature of the test itself (for 
example, different students preferring some topics more than others and doing 
relatively better on related test questions, some doing better than others on multiple 
choice questions, and so on), and marker differences and inconsistency. These factors 
account for some of the observed variation in scores, and this part of the variation is 
unwanted – it is ‘noise’ in the assessment process. Technically, we say that factors 
such as these, and the score variation they create, contribute to ‘measurement error’ in 
assessment.  
 
In fashioning tests, we try – or we should try – to reduce measurement error as much 
as possible, so that what remains is as close as possible to the 'true score'. To help us 
to quantify how much of the variation in a test score is due to differences in the true 
scores of the candidates and how much is due to error, or noise, measurement 
theorists have constructed a number of ‘reliability coefficients’, which are computed 
in different ways, but all of which have analogous interpretation. They all range from 
0 to 1 – theoretically, at least (some of them can under certain circumstances be 
negative). If, then, the value of some reliability coefficient is, say, 0.7, the implication 
would be that 70% of the variation in candidates' scores is due to real differences in 
their 'true scores', and the remaining 30% is attributable to errors of measurement, or 
‘noise’. The theory is that the higher the value of the coefficient the less error, or 
uncertainty, there is in the test results. In testing situations we typically expect to have 
coefficients above 0.8 (80% of the variance being attributable to valid variance) and 
preferably above 0.9 (90% valid variance).  
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2.2  True Score Theory  
 
The study of measurement error began in the United Kingdom about a century ago.  
Its origins can readily be traced back to a series of papers written by Spearman 
(1904a, 1904b, 1907, 1910, 1913) and Brown (1910, 1911) at the opening of the 20th 
century. The body of principles and ideas constructed upon the early work of 
Spearman and Brown has come to be known, sometimes disparagingly, as “Classical 
Test Theory”, often abbreviated as CTT.  We prefer the more descriptive label “True 
Score Theory”, which we shall use henceforth. For a properly rigorous, formal 
treatment of the fundamentals of True Score Theory, we refer the interested reader to 
Chapters 2 and 3 of Lord and Novick (1968).  
 
True Score Theory starts off from the fundamental premise that the observed score of 
an individual on a test, i.e. X, is equal to the sum of a true score, T, and a 
measurement error, E.  Conventionally, in symbols, we write 
 
[2.1] X = T + E 
 
Of these three quantities, we only have access to one, the observed score, while the 
other two are not directly measurable. Yet we need to have some way of quantifying 
the size of measurement error in order to know to what extent we can rely on the 
result of the test. 
 
Strictly, we should rewrite [2.1] as something like 
 
[2.1a] Xip =  Tp + Eip , 
 
where the subscripts i and p stand for, respectively, test i and person p. Thus adorned, 
expression [2.1a] says that the observed score of person p on test i is made up of the 
true score attributable to person p plus some measurement error specific to that 
person’s performance on that test. Where there is no likelihood of misunderstanding 
we shall use the simpler, unsubscripted forms X, T and E in place of the subscripted 
Xip, Tp and Eip. 
 
Note that X, T and E should be considered as statistical quantities. They stand not for 
specific values obtained from a specific individual on a specific test on some specific 
occasion, but for some value that you could get from a sample individual on a sample 
test. Technically they are called ‘random variables’. 
 
An important property of a random variable is that if we sample from it enough times, 
observing its value each time, the sample values will eventually converge on  a fixed 
quantity, called the ‘expected value’, or ‘expectation’, of the variable. The expectation 
of a random variable X is typically notated E(X). The first major assumption of True 
Score Theory states, reasonably, that the expected value of the observed score, X, is 
the same as the expected value of the true score T, often written as the Greek letter tau 
(τ).  In symbols 
 
[2.2] E(X) = E(T) = τ 
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From which it follows that  
 
[2.3] E(E) = 0 
 
the expected value of the error of measurement is zero: in other words, in the long run  
measurement errors will “cancel themselves out”. 
 
Another property of a random variable is that, in general, its values will vary from one 
observation to the next. This variation is typically summarised in the symbol σ2, 
called the variable’s ‘variance’.  When we refer to the variance of X, we may write σ2

X  
or σ2(X), or even, occasionally Var(X). The parenthesised forms are useful when the 
variable has its own subscripts, σ2(Xip), for example. 
 
Two random variables can vary together, or covary. Take height and weight, for 
instance. Taller people tend as a rule to be heavier, but the relationship is not 
deterministic. Similarly, we would expect pupils’ test results in reading to vary more 
often than not in the same direction as their results in numeracy. In both cases there is 
a positive ‘covariance’ between the two variables. We symbolise the covariance 
between two random variables X and Y as σXY, σ(XY), or Cov(X,Y). Note the similarity 
with the notation for the variance, σ2. Indeed, the covariance of a variable with itself is 
defined as being the same as its variance: 
 
[2.4] σXX = σ2

X 

 
The variance of two random variables added together is the sum of their variances 
plus twice their covariance: 
 
[2.5] σ2

X+Y = σ2
X + σ2

Y + 2σXY 

 
Clearly, if the covariance of X and Y is zero (i.e. they do not covary) the variance of 
their sum is equal to just the sum of their variances. We shall need to use this 
important result later. 
 
Although the covariance is very useful in giving us information about the relationship 
between two variables, its descriptive value is lessened by the fact that it is not easy to 
relate to the scale of either variable. For example, the covariance of weight (expressed 
in grams, say) and height (expressed, say, in centimetres) is expressed neither in 
grams nor in centimetres (in fact it is a function of the product of the two).  
Consequently another quantity derived from the covariance is more frequently used to 
describe the relationship between two variables. This is the ‘correlation’, usually 
notated by the Greek letter rho, i.e. ρ, which is essentially a covariance adjusted to be 
on a scale from -1 to +1. A correlation of -1 between X and Y means that X and Y vary 
in a perfect inverse relation to each other (when X goes up Y always goes down 
proportionally, and vice versa). Similarly, a correlation of +1 means that X and Y 
always vary together in the same direction. And a correlation of zero means that there 
is no linear relationship at all between X and Y. Values in between indicate a greater 
or lesser linear relationship between X and Y. 
 

10 
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The formal definition of the correlation between two random variables X and Y is 
 

 [2.6] 
YX

XY
XY 


   

 
We can now state the second major assumption of True Score Theory, namely that the 
covariance (hence also the correlation) of true score and measurement error is zero: 
 
[2.7] σTE = ρTE = 0 
 
Assumption [2.7], together with equation [2.5], permits us to formulate the important 
result 
 
[2.8] σ2

X = σ2
T + σ2

E 

 
that the observed score variance is equal to just the sum of the true score variance plus 
the error variance. This result is fundamental for much of True Score Theory, as well 
as its successor generalizability theory (G-theory), which we introduce later in this 
chapter and cover in some detail in Chapters 3 and 4. 
 
In the light of [2.8], the quest for measurement reliability becomes essentially the 
attempt to reduce as much as possible the error variance, σ2

E, as a proportion of the 
total variance, σ2

X.   
 
Now it can also be shown (for example by Lord & Novick, 1968, p.57) that 
 
[2.9] σXT = σ2

T , 
 
the covariance of the observed score and the true score is the same as the true score 
variance. 
 
But we also know, by rearranging [2.6], that σXT = ρXT σX σT. Substituting for σXT in 
[2.9], and squaring both sides, we have 
 
[2.10] ρ2

XT = σ2
T / σ

2
X = 1 – σ2

E / σ
2

X 

 
Thus, formally, the squared correlation of the true score with the observed score, 
which is defined as reliability, is also equal to the true score variance divided by the 
observed score variance, or, equivalently, the proportion of observed score variation 
which is not attributable to measurement error. 
 
Note that the value of any correlation coefficient is restricted to the range from -1 to 
+1. Hence the reliability coefficient, ρ2

XT, which is the square of a correlation, must 
necessarily be limited to the range from 0 to 1. By definition, then, for any reliability 
coefficient, ρ2, derived from [2.10] we can assert 
 
[2.11]  0 ≤ ρ2 ≤ 1 
  

11 
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The great value of [2.10] is that it permits us to switch between a view of reliability 
based on correlation, as predominated in early 20th century studies of reliability, and 
one based on variance ratios, which has now become the prevailing position. 
 
2.3  Equivalent tests 
 
At this point we have a conceptual basis for dealing with reliability, but only on an 
abstract level. Throughout the preceding discussion, the only observable quantity is 
the observed score, and the theory as thus far expressed gives us no means of 
unravelling the true score from the observed score. 
 
Suppose, however, that we have available two measurements, X = T + E and 
X’ = T’ + E’, such that  
 
[2.12] E(X) = E(T) = E(X’) = E(T’), 

σ2
X = σ2

X’, 
 σEE’ = ρEE’ = 0 
 
that is, the two measurements have the same expectation and the same variance, and 
their measurement errors are not correlated. Tests of this kind are what came to be 
called parallel tests (cf Lord & Novick, 1968, p.47). 
 
We do not give the working here, but it is easy to show that, given [2.12],  
 
[2.13] ρXX’ = σ2

T / σ
2

X = ρ2
XT 

 
Thus, by introducing a notion of parallel tests, it is possible to find a way of arriving 
at an expression for the reliability of a measure, ρXX′, the correlation between two 
parallel measures, which does not involve the unobservable true score T. 
 
Spearman and Brown had already arrived, apparently independently, in 1910, at the 
idea of calculating reliability by correlating measurements taken from two halves of 
the same test, so-called split halves, making the more or less implicit assumption that 
the two components would effectively be parallel. 
 
However, a reliability coefficient based on a pair of split halves only describes a test 
which is half the length of the original. A lasting contribution of both Spearman 
(1910) and Brown (1910) was the derivation of expression [2.14] which allows us to 
compute the reliability of the full length test, ρXX’, on the basis of the correlation ρ12 of 
the two component parts.  
 
[2.14] ρXX’ = 2ρ12 /(1 + ρ12) . 
 
In effect [2.14] is just a special case for k = 2 of the ubiquitous Spearman-Brown 
Prophecy Formula 
 
[2.15] ρKK’ = kρ12 /(1 + (k – 1)ρ12) 
 

12 
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where ρ12 is the correlation of two parallel tests of equal length, k is a multiplier 
(which need not be an integer), and ρKK’ is the predicted reliability of a test k times the 
length of the original tests. 
 
Some relaxation of the constraints expressed in [2.12] led subsequently to the 
introduction of the notion of equivalent tests, of which parallel tests are a special case. 
Debates continued through much of the century on the most appropriate way of 
defining equivalence in tests. Some of the better known attempts to come up with a 
suitable notion of test equivalence, apart from the ‘split halves’ of Spearman and 
Brown, include: comparable tests (Kelley,1923); repeated tests (test-retest); τ-
equivalent tests (Lord & Novick, 1968, Chapter 10); parallel test forms (Stanley, 
1971, pp 404-406); and many more. We do not enter here into discussion of the 
rationale of these many different ways of inducing replication of a measurement, 
which is well summarised, for example, in Brennan (2001a). The question of 
reliability indices corresponding to these many different types of equivalent test is 
revisited in Chapter 3.   
 
2.4  Coefficient alpha 
 
The insight supplied by [2.10] and [2.13], that reliability can be expressed as a ratio of 
variances, was available from the earliest times in the development of True Score 
Theory. But almost all of the reasoning about reliability coefficients was cast initially 
in terms of correlation rather than ratios of variances, using favoured methods of the 
time based on test-retest or split-half. This is not in fact so surprising, as the 
correlation coefficient had only recently been proposed, in the late 1880s, by Galton, 
who was very influential in Spearman's thinking (cf Stigler, 1989), and derived 
shortly after by Pearson (1896). 
 
Even though Fisher (1925) had published his seminal text on the analysis of variance 
12 years earlier, it was not until 1937 that Kuder and Richardson proposed a number 
of new reliability coefficients based on ratios of variance estimates drawn from a 
single test. The most famous of these coefficients, and for a time the most frequently 
applied, is the one reported as formula 20 in Kuder and Richardson (1937), now 
universally known as KR-20. 
 
Apart from its explicit expression as a variance ratio rather than a correlation 
coefficient, the main innovation of KR-20 is that it uses the sum of individual item 
variances in a test to estimate the error variance for the test as a whole. We do not 
here offer further detail, since KR-20 turns out to be a special case, applicable only to 
tests containing exclusively dichotomously scored items, of Coefficient α, which we 
consider below. Virtually all introductory texts on measurement theory can be 
expected to offer the interested reader some treatment of KR-20 (for example 
Nunnally, 1967, pp 196-197; Mehrens & Lehmann, 1984, p. 276; Bachman, 1990, p. 
176). 
 
Kuder and Richardson's paper does not appear to have been a powerful catalyst for a 
new wave of variance-oriented approaches to reliability, though there are a few 
exceptions (Baker, 1939; Jackson, 1939; Hoyt, 1941; Burt, 1947). Indeed it is not 
clear that Kuder and Richardson were influenced in any way by the growing interest 
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in the analysis of variance, which did not really catch on among transatlantic 
measurement practitioners until after World War II. 
  
Then in 1951, Cronbach published the landmark paper Coefficient Alpha and the 
internal structure of tests (Cronbach, 1951). Coefficient alpha, sometimes spelled out, 
sometimes written as the Greek letter α, is undoubtedly the most used (and abused?) 
of all the reliability coefficients, and seems to be almost de rigueur in almost any 
reported test application. 
 
Hogan, Benjamin & Brezinski (2000), for example, looked at a sample of 696 
psychometric tests listed in the Directory of Unpublished Mental Measures (Goldman, 
Mitchel and Egelson, 1977), a frequently cited information resource for measurement 
professionals in the United States; of the tests sampled, 533, almost exactly two 
thirds, reported a value of alpha, as opposed to other measures, as their index of 
reliability. 
 
Cortina (1993) also reports that  
 

A review of the Social Sciences Citations Index for the literature from 1966 to 1990 
revealed that Cronbach’s (1951) article had been cited approximately 60 times per year 
and in a total of 278 different journals. (Cortina, 1993, p.98) 

 
Although Coefficient alpha is virtually synonymous with the name of Cronbach 
(indeed it is more often than not referred to as “Cronbach’s alpha”) Cronbach himself 
has readily conceded (Cronbach and Shavelson, 2004) that he was by no means the 
first to propose the formula. Equivalent formulations had been previously proposed 
by, at least, Hoyt (1941) and Guttman (1945).   
  
The formula for α is 
 

[2.16] 




















 

2

2

1
1 X

i

k

k




  

 
where k is the number of items in the test, σ2

i  is the variance of the ith item in the test, 
σX is the total variance over test scores (a person’s test score being the sum of all the 
item scores for that person) and the summation is over all items. We recall that if all 
items in the test are dichotomously scored [2.16] reduces to the KR-20 formula which 
we mentioned above. 
 
Cronbach (1951) makes the claim, repeated in Cronbach and Shavelson (2004), that 
alpha is the mean of all possible split-half reliabilities for a given test application. In 
fact the claim is true provided that the notional component half-tests conform to the 
Spearman-Brown requirements for parallel tests summarised in [2.12], in particular 
that the item variances are equal (Cortina, 1993). Otherwise alpha will be less than the 
mean of all split-half reliabilities. In any case, we can expect intuitively that alpha, as 
an average, is likely to be more stable than its component parts taken separately. 
 
We can further recognise alpha as being a form of reliability index by comparing the 
formula of [2.16] with the second form of the equation for ρ2 [2.10], restated below as 
[2.17] 
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[2.17] ρ2

XT = 1 – σ2
E / σ

2
X  (from [2.10]) 

 
Comparing [2.16] with [2.17], disregarding for the moment the constant term k/(k-1), 

s, k, increases in size, we can readily see the 
milarity between α and ρ , with the sum of individual item variances, Σσ2

i, taking 

t [2.16], to seek further insight into the way alpha 
orks. Technically averse readers may find the following discussion a little heavy, 

 
ssibly 

eighted) item scores 

e here for simplicity that all items in the test have unit weight in the 
tion of the total ore (all the wi are equal to 1), so that [2.18] simplifies to  

 [2.5] that the variance of the sum of two random variables is 
 the sum of their variances plus twice their covariance. The generalisation of 

.5] from 2 to any number of variables is  

which approaches 1 as the number of item
2si

the place of the error variance σ2
E.  

 
Coefficient alpha is sufficiently important to the practice of reporting reliability to 
merit looking a little more closely a
w
and might wish to skip lightly over the material in the next few paragraphs. 
 
First of all, we recall that [2.16] involves both the test variance, σ2

X, and k variances,
σ2

i, of individual item scores Xi. But the test score X is just the sum of the (po
w
 

[2.18] 


k

i ii XwX
1

 

 
We assum
calcula sc
 

[2.19]  


k

i iXX
1

 

 
We already know from
equal to
[2
 

[2.20] ),()()(
11 jji i

k

i i

k

i i XXCovXVarXVar  
  

 
Equatio
just say

n [2.20] might look daunting, but it is in fact simpler than it first appears. It 
s that the variance of the sum of a set of random variables is equal to the sum 

f their variances plus the sum of all their covariances. There are in all, for a set of k 

e being understood to be over k terms, we can rewrite 
.16] as 

o
variables, k(k-1) covariances, of which, in general, k(k-1)/2 are different (because 
Cov(X,Y) = Cov(Y,X), always). 
 
Now, given [2.20] and using the more succinct notation σ2

i for Var(Xi) and σij for 
Cov(Xi,Xj), summations as befor
[2

[2.21]   =  
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

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If we now rewrite [2.21], putting K = k/(k-1) V = Σσ2

i and C = ΣΣσij, we can get a 
clearer f the basic structure of α 
 

.22] 

, 
view o

[2 
   CVCV

 







 

C
K

V
K 1  

ooking at [2.22] we can easily see that the most influential contributor to the value 
 of item covariances, C. Thus, if the items in the test 

hly correlated, their covariances will tend to be higher relative to their 
ariances, and will push up the value of alpha correspondingly. On the other hand, if 

 

ark schemes which invert the intended scoring of correct and 
 some 

 the 
y 

nd 

 
 been produced. Gulliksen (1950) had 

e account of the state of the art as it then was, and Cronbach’s 
ively established alpha as the primary reliability index had 

 in 

imates and estimators, in 

exceedingly large sample and averaging coefficients over many random drawings of 

L
of an alpha coefficient is the sum
are hig
v
items are not correlated with each other, their covariances will tend towards zero and
α will be close to zero. 
 
An unfortunate property of α is that, if C is negative, as it will be if negative 
covariances between items outweigh positive ones, α will itself be negative, as 
Cronbach & Hartmann (1954) pointed out quite early on. Sometimes this can occur 
ust because of flawed mj

incorrect answers for some items. At other times, negativity is an indicator of
serious breach of the assumptions of [2.12] which are supposed to hold between
items of the test. It is clear that negative-valued α cannot be interpreted as a reliabilit
coefficient, which is defined to be necessarily greater than 0 by [2.10] and [2.11]. 
 
Given the considerable influence of interitem covariances on the behaviour of alpha, 
it is not surprising that it has frequently been interpreted, and used, as a measure of 
constructs like internal consistency, homogeneity, unidimensionality, rather than – or 
s well as – reliability. Such interpretations of alpha, along with various lower-boua

claims, are comprehensively treated – it is fair to say with some degree of scepticism 
– by Cortina (1993), Schmitt (1996), Huysamen (2006) and Sijtsma (2009), far more 
competently than we can pretend here. 
 
2.5  Beyond alpha 
 
By the early 1950s, almost all the important results of True Score Theory as originally
ormulated by Spearman and Brown hadf

published a complet
rticle which definita

appeared in 1951. But the technical development of the underlying theory had still not 
really moved on since its inception half a century before. 
 
Observant readers will have noticed that the preceding discussion is framed entirely
terms of population parameters like τ, σ and ρ. This is not accidental. For 50 years 
leading practitioners of measurement theory had consistently confused sample and 
opulation quantities, observed and abstract quantities, estp

both conception and notation. Cronbach was himself, at the time, equally guilty of 
such confusion. He writes 
 

In thinking about reliability, one can distinguish between the coefficient generated from 
a single set of n persons and k items, or about the value that would be obtained using an 
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items. … In the history of psychometric theory, there was virtually no attention to this 
distinction prior to 1951, save in the writings of British-trained theorists. My 1951 
article made no clear distinction between results for the sample and results for the 

 
Th
co
sug  
pro hich 
ea ulation value. 

, 

rom 
y 

 to the relationship 

Spearman and Brown, there was really very little 

nd, 
 

rpretations of alpha (as an index of homogeneity, unidimensionality, or 

 

 
le 
 
 of 

aximum likelihood estimation and numerical methods. The old days, when 
xtracting factors, inverting matrices, finding derivatives iteratively, were all done by 

, 
t 

t 

population. (Cronbach & Shavelson, 2004, p.204) 

e same confusion persists still in citations of the formula for alpha. Some 
mmentators use the lower case Roman letter s in the notation for the variance s2, 
gesting that they have in mind an observed value with no particular sampling
perties (e.g. Stanley, 1971). Others (e.g. Nunnally, 1967) use the form σ2, w
ds us to suppose that they are thinking of a popl

 
It was, and unhappily still is in many circumstances, commonplace to take an index
of reliability, say, defined with respect to some imprecisely specified population of 
persons and test items, compute a value for the index by inserting values derived f
a single set of observations, and then generalise about the computed value without an
regard to the theoretical sampling properties of the index itself or
between the observations and the possible population(s) from which they might have 
been supposed to have been taken. 
 
Lord & Novick (1968) eventually supplied the missing underlying mathematical and 
statistical framework in a landmark publication which effectively marked the high 
point and the beginning of the end for the development of True Score Theory.  For 
once Lord and Novick had laid out what is generally agreed to be the definitive 
formalisation of the work begun by 
to add. 
 
What we mean by this last assertion is twofold: firstly, (virtually) all reliability 
measures cited routinely in the applied measurement literature (as documented, for 
example, by Hogan, Benjamin, & Brezinski, 2000) had been invented by 1951; a
secondly, any new contributions to the theory of reliability after 1968 have been either
new inte
whatever); critiques of alpha or of its more recent interpretations; proposals for new 
alpha-like coefficients offering better theoretical lower (or upper) bounds; or new
indices looking exactly like alpha except that one of the two dimensions in the 
notional matrix of observations (persons and items) was replaced by some other 
variable, like raters (e.g. inter-rater reliability measured by alpha over raters and 
persons). 
 
From 1968 onwards, it should have been time for new ideas and new approaches to
take over. The circumstances were certainly favourable. Computers were availab
then, and becoming famously twice as powerful every 18 months (Moore, 1965).
Massive advances had been made in statistical theory and practice, in the analysis
variance, m
e
hand, were about to be permanently consigned to history. Under these circumstances
it is astonishing that the old reliability theory introduced just after the turn of the las
century should have held on for so long, holding so much appeal that measuremen
professionals have been reluctant to let it go. 
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However, a century on, there are finally signs that the old order is at last changing.  
The most conspicuous development in measurement theory and practice generally 
over the last half-century has been the spectacular rise of “Item Response Theory” 

RT). IRT differs both conceptually and operationally from True Score Theory, and 
t 

 

 

ome 

s our impression that mainstream 
T has very little to say. We therefore devote the next section to a brief discussion of 

e 

e 

ach and his associates, who made the link between the definition of the 
liability coefficient as a variance ratio, the role of variance components in refining 

ce in 

963; 

 
effect there can be many influences 

ffecting a subject's performance on a test, some of which can be controlled, some of 

rt 

e 
t 

t 
ariety or type of fertilizer. Applications involving samples of effects drawn from 

the 

for 

(I
for many educational and psychological testing applications has become the dominan
theoretical and methodological instrument (computerised testing and international 
attainment surveys, for example). All IRT models require intensive calculation, and
their use would not have been feasible without modern computers; the generalised 
availability of the simpler, mainstream IRT procedures to a wide audience of 
measurement practitioners is only now possible because of the ready availability of
specialised IRT software on personal computers. 
 
It is not possible in these times to address any issues in measurement without s
reference to IRT. However, in the special case of the pursuit of a comprehensive 
treatment of reliability and measurement error, it i
IR
IRT, but only to set out our rationale for not offering in the report any further 
consideration of the contribution of IRT to current practical reliability issues in th
UK. 
 
On the other hand, the most important development which is of relevance to th
pursuit of a comprehensive treatment of reliability and measurement error is due to 
Cronb
re
the definition of true score variance, and the contribution of the analysis of varian
providing ready-made apparatus for manipulating variance components. The result 
was “Generalizability Theory” or G-theory (Cronbach, Rajaratnam & Gleser, 1
Cronbach, Gleser, Nanda & Rajaratnam, 1972). 
 
We recall that Spearman's original account of measurement error only allowed for 
two sources of variation, one in some sense ‘desirable’ (between true scores) and the
other ‘undesirable’ (everything else), whereas in 
a
which can not. Fisher (1925) showed, with the analysis of variance, how certain 
sources of variation can be manipulated and their effects taken into account when 
analysing experimental data. Not the least of the benefits which can be derived from 
the incorporation of the analysis of variance into generalizability theory is the 
considerable know-how in sampling practice and experimental design which is pa
and parcel of the intellectual baggage that the analysis of variance carries with it. 
 
Although Fisher’s analysis of variance dates from 1925, early applications of th
technique tended to be in areas like agriculture, where experiments were primarily se
up to differentiate between a small, fixed number of effects or treatments, like plan
v
large, perhaps infinite, domains like test subjects, test items or test raters were not 
norm. It was not until Eisenhart's (1947) paper that a clear distinction was drawn 
between the fixed and random effects models. Now the way was clear for serious 
application of analysis of variance techniques to reliability studies. The possibility 
development of complex G-theory designs has also benefited from the availability 
today of substantial computing power on the desktop.  
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We return to the contribution of generalizability theory to the study of measurement 
reliability in the final section of this chapter. 
 
2.6  Item response models  

irect modelling of (1) items rather than 
sts and (2) individual abilities underlying test scores rather than the scores alone. 

odels, quite distinct from those based on the idea of true 
ores, in which the performance of an individual on a particular item is defined to be 

ere he influenced 
right and his students (Wright & Stone, 1979; Wright & Masters, 1982). A parallel 

n 
0). There 

s whose 
sumptions must be discarded. In 

rder to establish the fit of items to a model they need to be extensively trialled. But 

ch-

… it is possible to describe behaviour on existing tests instead of constructing tests 

 
Th
Br
 

rocedures. (Lee, Brennan & Kolen, 2000, pp.14-16) 

Th el. 
Sa
Be lation on 

 
IRT arose, at least in part, out of a desire for d
te
The result is a new class of m
sc
a joint function of both the level of ability of the individual and the level of difficulty 
of the item. Models of this kind are called ‘item response models’. 
 
IRT arrived on the scene quite late. One of the earliest exponents was the Danish 
mathematician Rasch (1960), whose work was to become quite influential, 
particularly in Europe. Rasch visited the University of Chicago, wh
W
line of development in the United States is built on the chapters submitted by Alla
Birnbaum to Lord and Novick (1968) and on the work of Lord himself (198
are now numerous popularisations of IRT, for example Van der Linden and 
Hambleton (1997), Embretson and Reise (2000). 
 
IRT models items very rigidly. It makes very strong assumptions about the nature of 
items and their relationship to individual abilities and to each other. Any item
behaviour does not fit the model based on these as
o
once accepted, their properties are considered fixed (in other words attributes like 
item difficulty are not considered to be variable over different applications of the 
model), with the typical implication that the sample used for trialling will adequately 
represent the population of test takers in all subsequent applications of the item. 
 
While this procedure may be typical of many IRT analyses, particularly using Ras
based models, Anton Béguin has pointed out to us that in more flexible IRT models  
 

according to a model. Evaluating fit of an item to a more flexible model can be seen in 
the same way as quality control procedures using classical indices in Test and Item 
Analysis (for example the correlation between the item and the score on the remaining 
part of the tests). (Béguin, 2009, personal communication) 

is seems to conflict, however, with the assertion of Lee, Brennan and Kolen, cited in 
ennan (2001a, p.304): 

… the IRT procedure assumes strictly parallel forms (or a fixed form), while the other 
procedures [i.e. classical indices] assume randomly parallel forms. … In effect, error 
attributable to content sampling is assumed not to exist in the IRT procedure, but is an 
integral part of the other p

 
ere is in effect no error term as such in the standard presentation of an IRT mod
mpling theory has been proposed for IRT, for example by Holland (1990) and 
chger, Béguin, Maris and Verstralen (2003). Invariably, though, the popu
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which the sampling model is based is the population of test subjects; the test items are 

d.  

of a test to another. As such, reliability 
as not been a preoccupation of its devotees in the way that it has for true-score-based 

ve a reliability-like form can be 
computed based on an IRT analysis, but it is equally true that almost all such 

measurement relative to investigator-specified replications. (Brennan, 2001a, 

 
IR hich can be 
use rue-
sco ries, but has the added property of being sensitive to differences in 
bility of the test subjects. Determination of the information function is complex, and 

on 

the degree of certainty that a [given] test is an accurate measure of ability for any given 

 a true score. … [CTT reliability] is a metric which relates to 
asurement procedures (Doran, 2005, p.674). 

Br es 
fix ability 
of tion of the test or on 

ariation in any aspect of the test taker other than ability. 

t 
d to embrace any 

mporary or external influencing factor.  

considered fixed. Estimates of model parameters are obtained from one of a number 
of possible maximum likelihood fitting procedures, depending on the software use
What could be considered as error terms in an IRT analysis are the residuals obtained 
from constructing the deviations between observed person scores and scores predicted 
by the maximum likelihood fitting procedure. 
 
IRT is essentially a scaling model rather than a sampling model (Cardinet, Johnson & 
Pini, 2009): that is, it is designed more to place candidates on a scale than to facilitate 
the study of the variation from one application 
h
theories. The position which underlies this report is that reliability makes little 
practical or intellectual sense unless it is based on a notion of replication, as has been 
powerfully argued by Brennan (2001a). 
 
Brennan remarks, referring to the concept of reliability found in IRT, that: 
 

It is certainly true that statistics that ha

analyses treat items as fixed. … IRT has no explicit role for error of 

pp.304-305) 

T does indeed have a measure of precision, the information function, w
d to compute a quantity which is in some ways analogous to the reliability of t
re-based theo

a
is dependent on the stability of the model fitting procedure. Embretson and Reise 
(2000, pp 183-186), for example, provide a concise discussion of the information 
function. 
 
As has been pointed out by Doran (2005), IRT ‘reliability’, based on the informati
function, relates to  
 

value of [the ability parameter] θ. Clearly this does not describe the deviation of an 
observed score from
replication over me

 
ennan (2001a), moreover, observes that the IRT concept of information requir
ed, predetermined item and test attributes, with the consequence that the reli
a test cannot depend on the circumstances of the administra

v
 
In the emerging multidimensional IRT, the ability parameter θ can be a vector and 
hence reflect more than one ‘ability’. But this does not change the fundamental poin
unless the interpretation of the ability parameter is extende
te
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The other issue which arises is that conventional, mainstream IRT, whose models 
routinely admit only properties of test subjects and of highly constrained sets of items, 

ith no explicit error term, has no obvious apparatus which we can use to investigate 
l 

 elsewhere (cf, for example, Bock, 
rennan & Muraki, 2002). The issue of extending IRT coverage beyond persons and 

 
ever 

T 

eneralizability theory arises out of classical True Score Theory, but differs from it in 
 assumption is that an ‘observed score’ 

is equal to a ‘true score’ (called ‘universe score’ in G-theory) plus an error 

t-retest 

 
d 

alf 

r of these separated components quantified, 
and their effects combined in a single comprehensive reliability coefficient, or 

t also, 

ype 
ement aim, that of ranking individuals as consistently as possible on the 

measuring scale, G-theory identifies two types of measurement: ‘relative 

 
asurement, 

w
the contribution of multiple sources of error such as we typically find in educationa
assessment. This limits its potential usefulness in the context of the kinds of tests and 
examination that are prevalent in the UK.  
 
Some work is ongoing to improve the treatment of reliability in IRT by grafting on 
techniques drawn from generalizability and
B
items has also recently begun to be addressed, for example in multidimensional IRT
(MIRT) (e.g. Béguin & Glas, 2001 and references therein), which is becoming 
more accessible through advances in Bayesian estimation techniques. Many-facet 
Rasch measurement (Linacre, 1994; Linacre & Wright, 2002) is a potentially 
interesting direction which could merit further investigation. It is to be hoped that IR
treatments of reliability may benefit from some of these advances.  
 
2.7  Variance analysis and generalizability 

G
flexibility and sophistication. In both cases the

component. But in ordinary True Score Theory the error component derives from one 
single undifferentiated source of variance. In an alternative forms reliability study this 
source of error variance is the interaction between persons and tests, in a tes
reliability study it is the interaction between persons and occasions (of testing), in a 
split half reliability study it is the interaction between persons and subtests, and in an 
internal consistency reliability study (KR-20 and alpha) it is the interaction between
persons and test questions. These different possibilities for quantifying reliability lea
to as many different reliability coefficients, each depending on the nature of the 
conceptualised measurement error – in G-theory terms we might say depending on 
assumptions made about the relevant ‘universe of generalisation’ (respectively, the 
universe of substitutable tests, the universe of testing occasions, the universe of h
tests, or the universe of test questions).  

In G-theory the error component can be broken down into several different 
subcomponents, the contributions to erro

‘generalizability coefficient’. This is one of G-theory’s principal strengths. I
importantly, offers a “what if?” facility, which allows us to use information about 
contributions to measurement error to see how we might improve assessment 
procedures to reduce this error in future applications. This is its second principal 
strength. 

Also in contrast with conventional True Score Theory, which addresses only one t
of measur

measurement’ (the ranking application)  and ‘absolute measurement’. Absolute 
measurement is concerned with the precision with which individuals are located on
the scale, irrespective of where others might be. In criterion-referenced me
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the aim is to make mastery or grading decisions with maximum confidence when
applying criterion cut scores to test results, such as in National Curriculum testing, 
school leaving qualifications and workplace assessment. 
 
G-theory as originally formulated is underpinned by the conceptual and computation
apparatus of the analysis of variance (ANOVA), which pr

 

al 
ovided the machinery 

eeded for extracting whatever variance components were called for by the 

e 
eliability. 

 
 

 
ity first appeared in the 1960s and ‘70s.  In particular, the 

nalysis of variance, if viewed merely as a collection of procedures for manipulating 

 

omplicated variance structures. It also makes accessible the extensive experience in 

nd 4. 
r 3 we offer a reworking of the standard True Score Theory reliability 

dices, described earlier in this chapter, using unified G-theory tools and techniques. 

ore 

n
investigator. The analysis of variance freed measurement theorists from having to 
work with only two variables at a time. With conventional reliability analyses, th
experimenter must choose, for example, between test reliability and marker r
Using analysis of variance techniques, item, person and marker effects could all be
included in the same analysis, leaving it to the investigator to decide which of these
contributed to the ‘true score’ variance and hence to determine the numerator of the 
reliability coefficient. 
 
Statistical and computational theory and practice have moved on, of course, since the
theory of generalizabil
a
relatively simple linear models and extracting their variance components, is now 
effectively subsumed into more sophisticated, encompassing constructs like 
Generalized Linear Models (Dobson & Barnett, 2008; McCulloch, Searle & Neuhaus,
2008) and Multilevel Models (Snijders & Bosker, 1999; Goldstein, 2003). 
 
As a conceptual tool, however, G-theory continues to offer valuable insights into the 
subtleties of determining reliability through the partitioning and unravelling of often 
c
experimentation and survey design that form an inseparable part of its ANOVA 
heritage. 
 
The variance structure approach to reliability is discussed further in Chapters 3 a
In Chapte
in
Chapter 4 gives a flavour of the kinds of analyses made possible by G-theory which 
would be inconceivable using only the conceptual apparatus of classical True Sc
Theory. 
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3    The variance components model  

3.1  Reliability coefficients and standard errors of measurement 

We have outlined in Chapter 2 the evolution in reliability conceptualisation from the 
correlational approach of the early pioneers to the variance analysis approach of G-
theory. The consolidating role of G-theory in this evolution is very clear. G-theory has 
replaced the traditional reliability indicators of True Score Theory (alternate forms, 
test-retest, split half and also Cronbach’s α), by subsuming them as special cases in a 
more all-embracing conceptualisation. G-theory is a random sampling model, which, 
under the usual assumptions of linear modelling, provides a means of estimating the 
precision of measurements in situations where these measurements are subject to 
multiple sources of error (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Cardinet & 
Tourneur, 1985; Shavelson & Webb, 1991, 2006; Brennan, 1992, 2000, 2001b; 
Cardinet, Johnson & Pini, 2009; Raykov & Marcoulides, 2010, Chapter 9). It is 
therefore an approach with natural potential for exploitation in the context of 
educational testing and examining, whether academic, vocational or professional.  

For each type of measurement there is an appropriate form of reliability, quantified in 
a G coefficient. The ‘coefficient of relative measurement’, Eρ2, was the coefficient 
that Lee Cronbach originally defined as the generalizability coefficient. This 
coefficient enables us to estimate how precisely an assessment procedure can locate 
individuals, whether pupils, examination candidates or company employees, relative 
to one another on a measurement scale. The ‘coefficient of absolute measurement’, Ф, 
that Brennan and Kane (1977a, 1977b; see also Brennan, 2001b, p.35) defined as the 
‘dependability coefficient’, evaluates the ability of a procedure to locate individuals 
reliably on an absolute scale.  

The formula for Ф is identical with that for ρ2, any difference in computed value 
being due to the fact that in absolute measurement there are typically more 
contributors to error than there are in relative measurement. Developed at the same 
time as Ф by Brennan and Kane (1977a, 1977b), Ф(λ), a ‘coefficient of criterion-
referenced measurement’, addresses cut score applications (Brennan, 2001b, p.48). 
This coefficient indicates how reliably an instrument can locate individuals with 
respect to a cut score, λ, on the measurement scale, with clear implications for the 
possibility of misclassification.  

Each G coefficient is a ratio of true (or universe) score variance to the combination of 
true score variance and measurement error variance. Informally, we could consider 
this as a kind of signal-to-noise ratio, except that the denominator includes both signal 
and noise (signal-to-noise ratios also exist – see Brennan & Kane 1977b and Brennan 
2003, pp.14-15). G coefficient values are in the range 0 to 1, as for α, with 1 
indicating perfectly reliable measurement, 0 indicating totally unreliable 
measurement, and 0.7-0.8 generally agreed as the range of lowest acceptable values 
for scores to be considered ‘reliable’. Criterion values are relatively arbitrary choices, 
and an ‘acceptable’ coefficient value could be different for different kinds of 
application, depending on the purposes of the assessment. For example, the Dutch 
Standards for testing (Evers et al., 2002) advise that for important decisions about 
individuals coefficients of 0.8 and above would be sufficient, 0.9 and above being 
very good.  
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The square root of the measurement error variance is the standard error of 
measurement, or SEM, which is a measure of score precision (not accuracy, which 
has to do with how valid, as in ‘on target’, the measurement is). In G-theory the SEM 
relates to an average score, which in an examining context would typically be an 
examinee’s average test score (over several tests) or average question score (over the 
questions in a single test). As such it is based on the same metric as the average score 
that it refers to. In other words, if we have a test comprising questions each carrying 
three marks then the SEM for an individual’s average question score will also be 
estimated on a 0-3 scale. To produce an SEM for a total test score the average score 
SEM is simply multiplied by the number of questions that comprise the test. Under 
Normal distribution assumptions we can use the SEM to produce confidence intervals 
around the appropriate score estimate in the usual way.     

The SEM is a critical piece of information to consider, and is at least as important as 
calculation of reliability coefficients. It was already being proposed as the most 
appropriate measure of score reliability 40 years ago, by Skurnick and Nuttall (1968), 
in the context of classical True Score Theory. Most recently, reflecting on his 
lifetime’s work, Cronbach himself identified the facility to calculate the SEM as the 
essential contribution of G-theory (Cronbach and Shavelson, 2004). Use of the SEM 
is also recommended in the US Standards for educational and psychological testing 
(AERA/NCME/APA, 1999). In many modern-day applications, particularly in 
workplace assessment, where variance ratios are often meaningless by default, the 
SEM is the only useful indicator of reliability.  

As noted by Raykov and Marcoulides (2010, Chapter 9), “the notion of a universe lies 
at the heart of generalizability theory”. In the G-theory approach, therefore, the first 
requirement is to identify the intended universe of generalisation. This means 
identifying all observable factors that can be assumed or suspected to affect the 
dependent variable, which in this context is an individual’s test score or other form of 
assessment outcome such as a rater judgement, to decide over which of the factors the 
assessment outcome is to be generalised, and to note which factors are being 
implicitly or explicitly sampled in the assessment procedure. Those factors that are 
sampled will potentially contribute to measurement error. Test questions or 
assessment tasks, along with markers, raters, workplace assessors or verifiers, are 
examples. So also are essay topics, item formats, and so on.  

It is rarely the case that the particular questions used in a test are the only ones of 
interest for subject assessment. They are therefore by default a sample of all the 
questions that might have been used in their place, and they will in consequence 
contribute to measurement error. Similarly, the markers employed to evaluate test and 
examination performances are seldom of interest in their own right. They, too, are 
essentially sampled from some marker population, comprising actual or potential 
markers, and they too will contribute to measurement error. Ignoring the sampling 
status of questions, or modifying the characteristics of the marker samples, for 
example through the usual procedure of standardisation, will typically result in higher 
apparent assessment reliability, but this will be at the cost of the validity of the 
reliability outcome (see Kane, 1982, for an interesting discussion on this ‘reliability-
validity paradox’).           
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An appropriate generalizability study, or ‘G study’, will allow investigation of those 
contributions to score variation whose effects can in practice be observed. Respective 
influences on scores are quantified in the form of estimated variance components, 
using classical analysis of variance (ANOVA) or some other appropriate methodology 
(see Searle, Casella & McCulloch, 2006 for a comprehensive discussion of 
component estimation). The component information is then used to calculate SEMs 
and, if appropriate, G coefficients.  

A follow-on decision study (‘D study’) – the “what if?” analysis – permits predictions 
of reliability and measurement error should features of the current assessment 
procedure be changed in a future application. Possible changes might include 
increasing or reducing the numbers of questions in the test or the number of 
workplace tasks to be assessed, independently or simultaneously increasing or 
reducing the number of markers marking each script or of assessors judging each 
workplace task, introducing a set of focused units in place of a lengthy one-off 
examination, and so on. What we might decide to change will depend on what the 
outcomes of the G study are. Those factors that are found to make the largest 
contributions to measurement error will be the prime candidates for increased 
sampling in the future (typically test questions and markers) while those that 
contribute least to measurement error will be potential candidates for decreased 
sampling. Using this facility allows us to optimize measurement quality by maximally 
increasing precision within any given financial, logistic or other constraints.  

3.2  Subsuming classical reliability indicators as special cases 

Subsuming classical test-based indicators  

As we have noted more than once in this report, classical reliability indicators are 
subsumed as special cases in the more comprehensive framework of G-theory. 
Consider, for example, the alternate (or parallel) forms approach to reliability 
estimation. Two or more tests can be strictly parallel in the sense that they are 
designed to have exactly the same mean score and standard deviation. Alternatively, 
they can be randomly parallel, with no empirical constraints imposed; an example 
would be where tests are drawn by random sampling from within a large question 
bank, representing a subject domain. Or they can be tests constructed manually by an 
examiner following some given test specification, and designed on the basis of expert 
judgement to be interchangeable for the purpose of use in a particular assessment 
programme – the examiner’s assumption would be that whichever test is used the 
candidate outcomes would be the same. The outcome of administration of two such 
tests, typically administered within a very short time interval to minimise maturation 
and relevant learning effects, will be two sets of test scores, one set for the first test 
and one for the second. Every person tested, whether pupil, school-leaving 
examination candidate or workplace employee, will have two scores in the set. For 
any individual the two scores are considered to be independent, in the sense that the 
score achieved on one of the tests is assumed not to have any direct influence on the 
score achieved on the other. The classical reliability indicator is simply the correlation 
between the two sets of test scores.  

In experimental design terminology this is an example of a two-factor repeated 
measures design. Persons and tests are the two factors, or independent variables, that 
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impact on test scores, the dependent variable. Since every person attempts both tests, 
persons and tests are described as ‘crossed factors’. At this point it might be useful to 
note that G-theory terminology differs from general experimental design terminology 
in some respects. In particular, G-theory typically speaks of ‘facets’ rather than 
‘factors’. A facet in G-theory is synonymous with a factor in ANOVA (but see 
below). Cronbach and his associates followed Guttman in opting for the new term 
‘facet’, to avoid confusion in psychometric circles with the factors of factor analysis 
(Cronbach et al. 1972, p.2 footnote). Another example of terminological difference is 
that this particular testing pattern – a 2-factor crossed design – is in G-theory called a 
one-facet design. This is because in the original development of G-theory, ‘persons’ 
were the unique object of measurement, and the variables that could influence the 
testing outcome for individual persons were ‘facets’ of the assessment procedure. 
Here, ‘tests’ is the only identified facet. The shorthand symbolic representation of this 
design in G-theory is p  t, or more simply pt, where p and t represent, respectively, 
persons and tests, and ‘’ indicates that persons and tests are crossed, i.e. every person 
attempts all the tests.   

We can express the observed score, Xij, of person i on test j in terms of the following 
linear model: 

[3.1]    Xij = μ + (μi – μ) + (μj – μ) + (Xij – μi – μj + μ) 

where  

- μ is the overall mean score of all persons (in the relevant population) on all tests (in 
the universe of interchangeable tests) 

- (μi – μ) is the difference between the mean test score of person i (i.e. the mean test 
score of a randomly selected person over all the interchangeable tests in the test 
universe) and the overall mean score, i.e. person i’s deviation score, also known as 
the ‘person effect’  

- (μj – μ) is the difference between the mean score of test j and the overall mean 
score, i.e. test j’s deviation score, or the ‘test effect’ 

- (Xij – μi – μj + μ) is the residual (what is left when everything else is accounted 
for).   

 
[3.1] is simplified in [3.2], in which the person effect and the test effect are 
symbolised by αi and  βj, respectively, with  γij,eij representing the residual confounded 
with measurement error: 

 
[3.2]    Xij = μ + αi + βj + γij,eij 
 
If we square each person’s deviation score, producing (μi – μ)2, then sum the squared 
deviations over all persons and average, we will have the between-persons variance, 
2

p. In other words we will have a quantification of the amount of variation that exists 
between the average test scores (averaged over the two tests) of the tested individuals. 
We can do the same with test score deviations, to provide a quantification of the 
between-tests variance, (μj – μ)2 =  2

t. Repeating the process for the final term in [3.2], 
this time averaging the deviations over both persons and tests, provides a 
quantification of the confounded person-test/residual variance, 2

pt,e. Finally, if we do 
the same with the squared deviations of the observed person by test scores from the 
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overall mean score, i.e. (Xij – μ)2, we will have a quantification of the total variation in 
observed test scores, i.e. 2

X. 
 
Why is all of this relevant?  It is relevant in the sense that if we accept the usual linear 
modelling assumptions about the relationships among αi , βj  and γij,eij, i.e. that these 
effects are uncorrelated and that the expected value of the errors is zero, then we will 
be able to express the total observed score variance as a linear combination of 
component variances: in this case the between-persons variance 2

p, the between-tests 
variance 2

t, and the residual-cum-error variance 2
pt,e. If we subtract μ from each side 

of [3.1] and then square the two sides, it follows that: 

[3.3]    2
X = 2

p + 2
t + 2

pt,e 

In other words the total observed score variation can be partitioned into the variation 
due to differences between persons plus the variation due to differences between tests, 
plus any remaining variation not otherwise accounted for. 

At this point, and throughout this chapter, we offer a variance partition diagram for 
illustration (Figure 3.1). Variance partition diagrams were first introduced by 
Cronbach and his associates in their seminal book on G-theory (Cronbach et al., 1972, 
p.37), as a potentially useful graphical device to show how the total variance in a set 
of scores can be attributed to the various different identified contributors. Variance 
partition diagrams have the appearance of Venn diagrams, but they have a different 
interpretation. In a two-circle Venn diagram each circle represents a set of some kind, 
the members of the set sharing some particular quality, such as colour of hair, being 
mammals, being made of glass, round objects, being a member of the professional 
assessment community, or whatever. The interaction between the circles represents 
those individuals or objects that belong to both sets, in other words those that have 
both relevant qualities: round glass objects, dark haired assessment professionals, and 
so on.   

Figure 3.1  Variance partition diagram for the crossed design p  t 
(alternate forms administration), with p and t representing, 
respectively, person and test variance and pt,e representing pupil-
test interaction variance confounded with residual variance 
 

 

In a variance partition diagram, on the other hand, circles represent factors (here, 
persons or tests), and the sectors created when circles intersect represent the 
contributions of these factors and their interactions to total observed score variance 
(but note that relative sector sizes do not reflect the relative importance of the 
different factors as contributors to total variance). The intersection in a two-circle 
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diagram represents a confounded interaction effect, since it will also represent all 
residual variance.  

Usually, though not always, interaction variances that involve the ‘object of 
measurement’ contribute to measurement error, of both types, relative and absolute. 
The only time that such interaction variances do not contribute to measurement error 
is when the factors interacting with the object of measurement are not randomly 
sampled but are ‘fixed’– this is explained more fully in Chapter 4. Main effects, and 
interactions among these, contribute only to absolute measurement error, and only 
then if the factors concerned are considered randomly sampled.  

In Figure 3.1 the three sectors in the diagram represent three variances: between-
persons variance (p), between-tests variance (t) and pupil-test interaction variance 
confounded with residual variance (pt,e). The residual variance will subsume any 
unidentified ‘hidden’ influences on the test scores – hidden factors – as well as 
random fluctuations.  

In this context of relative measurement the estimated universe score variance is the 
between-person variance, 2

p. This will be the numerator in the relative G coefficient. 
The only contribution to error variance here will be the confounded person-test 
interaction effect, 2

pt,e. This is because if the aim is simply to place individuals 
relative to one another on the measurement scale then any between-tests variance, 2

t, 
will be irrelevant. If one test has a higher mean score than the other this simply moves 
all candidates up the scale without changing their standing relative to one another. 
Figure 3.2 illustrates the attribution of the three variances to ‘valid’ variance and to 
‘error’ variance for the relative measurement of persons. 
 

Figure 3.2  Variance attribution diagram for an 
‘alternate forms’ administration, with p and t 
representing, respectively, persons and test forms 
 

 
 
The error variance in this case is 2

pt,e/nt, i.e. the person-test variance component 
divided by the number of tests that each person attempted (nt is equal to two in this 
classical alternate forms example). This is the sampling variance for a generic 
person’s average test score, and is denoted in G-theory for this type of relative 
measurement application by 2

δ. Since we are dealing with a sample-based estimator, 
we can consider the positive square root of the sampling error variance, i.e. δ, as a 
standard error, in this case the standard error of measurement (SEM) for a person’s 
average test score. [Note that if we are interested in a person’s combined test score 
rather than the average test score then the appropriate SEM would be ntδ]. 
Henceforth we shall assume that square roots of variance components used as 
standard errors are always positive, and will not labour the point each time in the text. 
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The denominator in the associated G coefficient is the sum of the between-persons 
variance and the adjusted person-test/residual variance (the ‘noise’). The relative G 
coefficient, ρ2, is, then:  
 

[3.4] 
teptp

p

n/2
,

2

2





 

In the traditional alternate forms application any between-test variance, i.e. any 
difference in the overall difficulty of the two tests, is of no interest. All that matters is 
how similarly the tests locate individuals relative to one another on the common score 
scale. Should the tests produce exactly the same relative locations for individuals on 
this scale then we would have perfect ‘reliability’. The less well the relative 
positioning of individuals coincides the less reliable the assessment will be considered 
to be.  

The G coefficient for relative measurement usefully replaces the classical alternate 
forms inter-test correlation. The more interesting point to note is that the alternate 
forms approach can very easily be extended under G-theory, by being applied to 
situations in which more than two tests are used. Thus candidates could be asked to sit 
three tests, or four or five, or however many we think they might tolerate, and that the 
budget can afford, and still remain motivated to apply themselves seriously. In this 
way we would have more observations of person by test interaction, thus reducing the 
measurement error arising from this when differentiating individuals, whether school 
pupils, external examination candidates or workplace employees. In expression [3.4] 
we would simply divide the interaction variance component by the appropriate 
number of tests used, which will now be greater than two.  

The higher the number of interchangeable tests that we might be able to administer to 
the same persons the more precise our variance component estimates will be. Once we 
have the estimates, we can plug them into [3.4], along with the current value of nt, to 
estimate current score reliability, as a variance ratio or SEM. But more than this, we 
can substitute nt with any other value to estimate reliability with any feasible 
alternative number of test administrations, and in this way see to what degree we 
might minimise the measurement error, or optimise the measurement, within any 
given constraints (the “what if?” analysis). If we assume that the various 
interchangeable tests that we use are drawn at random from the (real or virtual) 
‘universe’ of such tests then we can generalise the empirical results to that universe.  

The traditional test-retest and split half approaches to reliability estimation can be 
treated similarly, simply by replacing test forms (t) in the two-factor crossed design 
with test occasions (o) or split half subtests (s). And again we are not limited to just 
two occasions of testing or to two subtests, but can use as many as are practicable.     

But suppose the primary aim of the assessment had not been person differentiation for 
the purpose of norm referenced decisions. Suppose that we were rather attempting to 
locate individuals absolutely on the measurement scale, irrespective of where their 
fellow test takers might be. What difference would this make to the way we 
conceptualise and quantify the measurement error? The answer is that we would now 
need to recognise a second contributor to measurement error, that is between-test 
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variation, since any differences in the general difficulty of the tests used would 
become newly important. This is especially the case where criterion-referenced cut 
scores are to be applied. Even if individuals are similarly located relative to one 
another on the measurement scale by each of two or more tests, if the tests differ in 
difficulty then the decision outcomes for each individual could be different, too, 
depending which test they take in the ‘live’ assessment. In this context the person-test 
interaction would be joined by the between-tests effect as a contributor to error 
variance. Figure 3.3 illustrates this.  

Figure 3.3  Variance attribution diagram for 
absolute measurement of persons (p), using 
several different tests (t) 
 

pt,ep tpt,ep

 

The error variance becomes [2
t/nt + 2

pt,e/nt], symbolised as 2
∆. [We could have 

written the error variance expression as (2
t + 2

pt,e)/nt, but have not done so in order 
to preserve the clarity of distinction between the two error contributions].    

The absolute G coefficient, Ф, is given by 2
p/[2

p + 2
∆], or, in detail: 

[3.5]   teptttp

p

nn // 2
,

22

2





                                                           

 

The square root of the error variance, i.e. √(2
t/nt + 2

pt,e/nt) or ∆, is this time the SEM 
for absolute measurement. As before, the SEM metric concerns an individual’s 
average test score. If we need the SEM associated with a generic individual’s total 
score over the different tests then we multiply ∆ by nt. 

Subsuming Cronbach’s α 

The three classical approaches to reliability estimation considered thus far all focus on 
relative measurement only, and they are all based on test scores. The alpha 
coefficient, as we have seen in Chapter 2, is also uniquely focused on relative 
measurement, but this time looking at item or question scores within a single test 
rather than at whole-test scores. Again, a two-factor crossed design represents the 
practical situation; Figure 3.4 illustrates variance partition in this case. As before, the 
total score variance can be attributed to three sources: persons, whose average 
question scores will vary to some degree, test questions, whose overall scores 
(averaged over persons) will also typically vary, and the person by question 
interaction combined with any other unidentified influencing variables and residual 
random fluctuations.      
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Figure 3.4  Variance partition diagram for the crossed 
design p  q (single test administration) 
 

 
 
In this testing application persons are again the focus of interest, the collection of test 
questions – the test – being merely a device for person measurement in some given 
sense (numeracy ability, historical knowledge, height measurement skills, or 
whatever). Both persons and questions are considered conceptually as having been 
randomly sampled from some larger group, the population of persons or the universe 
of questions (this latter being virtual to a greater or lesser degree).  
 
Once again, we can consider two application possibilities: relative measurement and 
absolute measurement. The variance of true scores is in both cases the between-
persons variance, 2

p. A measurement error contributor for both types of measurement 
will be the confounded person-question interaction variance, 2

pq,e (see Figure 3.5). A 
second contributor to measurement error variance for absolute measurement 
applications is the between-questions variance, 2

q (see Figure 3.6).  
 

Figure 3.5  Variance attribution diagram for the relative 
measurement of persons using a set of test questions 
 

 
 
The G coefficient for relative measurement, ρ2, is: 
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As we see, this expression is exactly analogous to that given earlier [3.4] in the 
context of alternate forms reliability investigation, t for tests simply being replaced 
here by q for questions. In this particular case, however, what we have is in essence 
Cronbach’s α coefficient: the values of ρ2 and α will be identical. Again, the SEM is 
the square root of the error variance, i.e. √(2

pq,e/nq), or δ. This will be the SEM for a 
person’s average question score. We multiply this SEM by nq to find the SEM for a 
person’s total test score, the usual focus of interest in cut score applications. In other 
words, the SEM for an individual’s total score on a test is nqδ. 
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Figure 3.6  Variance attribution diagram for the absolute 
measurement of persons using a set of test questions 
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If we are interested in locating a person as precisely as possible on a measurement 
scale, then mere rank ordering is not sufficient. Unless the questions comprising the 
test are considered to be the only questions of interest then variation in question 
difficulty will now become relevant, between-questions variance becoming a second 
contributor to measurement error. In other words, we need now also to take into 
account the additional measurement error that will have arisen from the question 
sampling. So the absolute error variance will again be a composite term, comprising 
both the question variance and the confounded person-question interaction variance, 
each term divided by the number of sampled questions, i.e. (2

q/nq + 2
pq,e/nq). As 

usual, the standard error of measurement for a person’s average question score is the 
square root of this quantity. Multiply by nq and we will have the SEM for a generic 
person’s total test score. 
 
The expression for Ф, the absolute G coefficient is: 
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When cut scores are to be applied, Ф is replaced by Ф(λ), a criterion-referenced 
variant (Brennan 2001b, p.48), in which λ denotes the cut score: 
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Once we have the expressions for the reliability coefficients and SEMs, we need only 
to substitute the relevant values of the estimated variance components into them, 
along with nq, to find their values estimated for a given testing situation. But again we 
can do more than this. We can substitute different question sample sizes, i.e. different 
values of nq, into the expressions to predict the effect that changes in test length might 
have on score reliability and precision. As described earlier for the alternate forms 
approach, this would be a simple example of assessment optimization (always 
recognising that what might be optimal in theory might not be achievable in practice 
because of resource constraints – see, for example, Marcoulides 1993, 1995, 1997 on 
the issue of optimisation within budget constraints).  

These G coefficients, like α itself and the three test-based correlation coefficients, are 
sensitive to the size of the pupil variance, and not only to the size of the measurement 
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error. The higher the pupil variance the higher will be the values of the coefficients, 
and conversely the lower the pupil variance – the more homogeneous the group of 
persons taking the test(s) – the lower will be the coefficient values. When the focus of 
the assessment is relative measurement, when we are attempting to differentiate 
among individuals as well as possible by spreading them on a score scale, then one 
strategy to achieve this is to select questions for the test that serve this purpose best. 
Hence the classical pretesting strategy of rejecting items that have very high or very 
low facilities, along with those whose discriminations (correlation between item and 
the rest of the collection of items) are low (traditionally below 0.3 or thereabouts). If 
the aim of the assessment is not to spread individuals, but is rather to locate them with 
an absolute value on a score scale, then this pretest strategy is inappropriate.    

Other important influences on the magnitude of the coefficients are clearly the size of 
the person-question interaction variance (confounded as it is with residual variance), 
the size of the between-questions variance (in the case of absolute reliability), and the 
number of test questions in the test (since the higher the number of questions the more 
the two question-related variances are reduced). In the case of the relative coefficient 
(and α) the number of questions in the test has a greater influence on the measurement 
error, and hence on the value of the coefficient, than the degree of average inter-
correlation among the test questions (for a demonstration see Cortina, 1993).  

For Ф(λ), the location of the cut score relative to the mean of the score distribution is 
also influential. The further the cut score is from the mean test score the higher will be 
the value of Ф(λ). This makes intuitive sense, since applying a cut score to a high 
point in the score distribution could result in the maximum number of individuals 
being misclassified, whereas applying a cut score to the tail of a distribution would 
minimize classification error. Note in this sense that Ф(λ) tells us nothing about the 
validity of a cut score choice, nor about the practical meaning of the resulting 
classifications. 

3.3  Marker reliability studies 

As a final example of a two-factor design, consider a typical marker reliability study 
in the context of academic external examinations (for details, see, for example, 
Meadows and Billington, 2005, p.48; Sykes et al. 2009). Here, markers have 
traditionally been brought together for ‘standardisation’ before marking assigned 
examination scripts. Before and during the standardisation meeting the markers 
(assistant examiners), are expected to familiarise themselves with the examination 
paper that they will be marking, and with the mark scheme they will use. There will 
be discussion about the paper and the mark scheme, and a few exemplar scripts might 
be evaluated in a plenary session. Markers are then given a batch of scripts to mark, a 
sample of which is later also marked by a senior examiner. An alternative strategy is 
to have a senior marker pre-mark certain scripts or questions and to seed these among 
markers’ batches. The resulting mark distributions are compared across the two 
markers. The same procedure is used by awarding bodies in the vocational sector, 
when assessors are standardised for evaluating performances on ‘significant tasks’, 
through comparison with the judgements of internal verifiers. For these kinds of 
standardisation strategies, we have again a two-factor crossed design, as shown in 
Figure 3.7. 
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Figure 3.7  Variance partition diagram for the crossed design 
p  m (marker reliability study) 
 

 
 
Should the assistant examiner’s marks be consistently more severe or more lenient 
than those of the senior examiner then the marks for all the scripts marked by that 
examiner will be adjusted upwards or downwards by some appropriate amount, thus 
reducing the between-markers variance. Should the senior examiner feel 
uncomfortable with the degree of consistency evidenced in the assistant examiner’s 
marks, in other words should the assistant examiner have produced a ‘jagged profile’,   
then a complete re-mark might be requested and the process repeated. A jagged 
profile, of course, is evidence of person-marker interaction, senior examiner and 
assistant examiner appreciating different scripts to different extents. Since the implicit 
assumption in such marker standardisation exercises is that the senior examiner is 
always ‘correct’, a jagged profile is considered as evidence that the assistant examiner 
cannot mark consistently. So what we have going on here is an attempted reduction in 
both between-marker variance and person-marker (i.e. script-marker) interaction 
variance for the live examination. 
 
If the assumption that senior examiners ‘carry’ standards, an assumption which is 
questionable, and which has indeed been shown in at least one research study to be 
untenable (Johnson & Cohen, 1983, 1984), were to be abandoned, then both 
examiners could be considered as interchangeable in principle, and G coefficients and 
SEMs could usefully be calculated. And if more than two markers could be required 
to mark a batch of the same scripts, then the results would be more dependable and 
more readily generalised. Figure 3.8 illustrates the appropriate variance attribution for 
such a marker reliability study. 
 

Figure 3.8  Variance attribution diagram for the relative 
measurement of persons (scripts) using multiple markers 
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The G coefficient for relative measurement, ρ2, is in this case: 
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where 2

p is, as usual, the between-persons (in practice the between-scripts) variance, 
which reflects the variation between the overall marks awarded to the evaluated 
examination scripts; 2

pm,e, is the confounded person-marker (script-marker) 
interaction variance, which reflects the degree to which different markers agree or 
disagree about the marks to award to one script compared with another; and nm is the 
number of markers involved. As noted by Bramley (2007), this coefficient is identical 
in form to Cronbach’s α coefficient, the internal consistency of markers becoming the 
focus in place of the internal consistency of test questions (cf. [3.6]).  
 
If it is the absolute value of the person’s score that is important, rather than person 
ranking, then we should be exploring the reliability of absolute measurement, which 
the between-marker (intermarker) variance will additionally influence (see Figure 
3.9).  
 

Figure 3.9  Variance attribution diagram for the absolute 
measurement of persons (scripts) using multiple markers 
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The expression for Ф, the absolute G coefficient is: 
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The aim of marker standardisation is clearly to minimise, if not to eradicate, the 
between-markers variance. The person-marker interaction effect – already reduced by 
replacing ‘aberrant’ markers – could then be minimised through the multiple marking 
of scripts (although the relationship with marker numbers is not linear, and there will 
eventually be diminishing returns for higher marker investment).  
 
As an interesting aside, this same two-factor design can be used to provide an 
indication of the number of common scripts that markers should ideally be asked to 
mark in order for markers themselves to be reliably identified as ‘functioning 
adequately’ or not, in the sense of their relative severity or leniency. For if we were to 
ask several markers independently to mark, say, 15 scripts, we might identify one or 
other as lenient, normal or severe using some given criterion. If we increased the 
number of scripts to, say, 25 we might begin to see a different picture. This will be 
because of the influence of script sample size on the comparative outcomes. Through 
the ‘principle of symmetry’, identified by Cardinet, Tourneur and Allal (1976, 1981, 
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1982), we could use the same study data to see how reliably markers had been 
positioned relative to one another on the common measurement scale, rather than 
looking at how well scripts had been relatively located. Attention would switch from 
persons (scripts) to markers. Figure 3.10 illustrates this shift in focus.  
 

Figure 3.10  Variance attribution diagram for the 
relative measurement of markers on the basis of 
marked persons (scripts) 
 

 
 
The relative G coefficient for marker measurement is 
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where 2

m represents the between-markers variance and np is the number of persons 
(scripts) evaluated by each marker.  
 
But perhaps relative measurement is not the most appropriate form for comparing 
markers’ standards? We are surely more interested in how different the markers’ 
absolute marking standards are than whether or not different markers come out with 
the same script ranking. We should, therefore, be thinking instead about absolute 
measurement when we explore marker reliability. The effect on measurement error of 
the between-person (between-scripts) variance therefore needs to be taken into 
account as well – see Figure 3.11 for variance attribution. 
 

Figure 3.11  Variance attribution diagram for the 
absolute measurement of markers on the basis of 
marked persons (scripts) 
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The G coefficient for absolute marker measurement is then:   
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If these coefficients could be calculated both before and after marker standardisation 
then the impact of the standardisation could be measured. But however effective 
marker standardisation might be, there will always remain differences in the overall 
marking standards of markers and in the degree to which different markers are 
influenced to move away from any general standards in an inconsistent way when 
faced with individual scripts. This is why it is always advisable to multiple mark 
scripts in cases where mark schemes and other factors leave room for marker 
subjectivity. It is in consequence problematic that even dual marking is apparently 
impracticable to implement within the examinations system in the UK, because of the 
sheer proliferation of qualifications combined with a finite number of potential 
examination markers and time constraints (Meadows & Billington, 2005, p.58).  
  
3.4  A comment on ‘hidden’ factors 
 
All of these two-factor (one-facet) designs are seriously limited as regards score 
reliability. This is because, putting aside the impact on question or test scores of the 
persons themselves, i.e. of the knowledge, ability or skill of the individuals being 
assessed, each two-factor design focuses on only one other potentially influencing 
factor, and in so doing ignores other factors that might be at least as influential as the 
one investigated. Thus, the persons by tests design (pt) looks only at the impact of 
entire tests, excluding any consideration of questions within the tests or of marker 
effects, where these, or interactions involving them, might have an influence. The 
persons by questions (pq) design looks at the impact of test questions, but not at the 
impact of alternate tests or of markers. The persons by markers (pm) design explores 
marker effects but to the exclusion of test and question effects, and indeed of any 
possible mark scheme effects.  
 
By failing to include more than one score impactor at a time, all variations of the one-
facet design fail to take into account the influence on scores of other main effects. 
They equally fail to explore the influence on scores of several potential interaction 
effects, among main factors and also between main factors and the test performances 
being evaluated. For example, a marker reliability study in which multiple markers 
mark a set of student essays might result in a high reliability coefficient. But all that 
this is telling us is something comforting about the degree of consistency in marking 
that can be achieved for that one essay topic. Should essays from the same students 
but on a different essay topic have been rated, would the reliability outcome have 
been the same? Possibly. But then again possibly not. By focusing on one single essay 
topic we have essentially chosen to ignore any potential contributions to relative 
measurement error of person by topic interaction, along with the additional potential 
contributions to absolute measurement error of topic variance and of marker by topic 
interaction.  
 
When potentially influencing variables do not feature in an analysis design, we call 
them ‘hidden factors’. Where hidden factors do have a potential impact on scores, 
then ignoring them, and their effects, will reduce the validity of the reliability 
measurement. We would be estimating reliability as consistency, or replicability, but 
only for a restricted set of conditions of assessment. We return to this issue later.
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4     Extending variance analysis in reliability estimation  

4.1  Investigating question and marker effects simultaneously  

The principles of G-theory are readily extendable to more complex designs, 
accommodating broader composite universes of generalisation. Thus, we can move 
away from the “one variable at a time” approach of reliability investigation described 
in the previous chapter and look instead at more comprehensive models of reality. In 
particular, instead of looking separately at the influence of questions or of markers on 
measurement error we can explore both potential influences simultaneously, as well 
as their possible interaction.  

In achievement testing there will typically be differences in the difficulty of test 
questions, and there can be expected to be person-question interaction as well. The 
larger and the more complex the questions the larger these influences on measurement 
error are likely to be. Structured questions, of the type that feature in science 
examinations, and essay questions, so popular in the humanities and social sciences, 
are also particularly vulnerable to between-marker differences and to marker 
inconsistency. So, too, are the creative products that are the outcomes of assessments 
in subjects like art and drama, and probably also the elements that comprise a 
portfolio of class or workplace based work. Simultaneously investigating the separate 
and the combined effects of questions and markers on assessment reliability will 
provide more valid reliability estimates, since we will be looking at the replicability of 
assessment results over both the universe of possible test questions and the universe 
(population) of potential markers.   

Figure 4.1 illustrates the three-factor model pqm, with p representing persons (for 
instance, GCSE candidates, Key Stage 2 pupils, workplace trainees), q representing 
questions, and m representing markers.      

Figure 4.1  Variance partition diagram for the crossed design p  q  m  
 

 

For generalization purposes we assume that both markers and test questions are 
samples – preferably random representative samples – drawn from within their 
respective populations or universes. Moreover, we assume here for simplicity that 
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these populations would be of infinite size (this is not a necessary assumption for G-
theory application) whether the set physically exists in its totality or not. In the case of 
test questions the universe could be, for example, the entire set of GCSE A level 
mathematics questions, some of which will already have been used in past 
examinations but most of which remain to be developed. Or, in the case of the unit 
‘Installation of Electrical Systems’ in a Level 3 Diploma in Electrotechnical Services, 
it might be all the possible practical tasks from which a handful might be selected to 
form the basis for assessment through practical demonstrations. Then again, it might 
be all the possible examples of created products that an individual might offer within 
a portfolio of evidence in the ‘Design’ unit of a Level 1 Award in Creative 
Techniques in Design. 

In the case of markers, for which we can readily substitute workplace assessors, the 
universe of generalisation would be all those individuals with the appropriate 
characteristics, practising school teachers, for example, or experienced professionals 
in the vocational field concerned, including any that might have served in this role in 
the past or who might serve as such in the future.  

Any score variation that arises from differences between markers, from differences 
between questions, or from interactions between markers and examinees, between 
questions and examinees, and between markers and questions and examinees, will 
constitute noise in the system, and will contribute to error variance, for both relative 
and absolute measurement. Variation between markers, variation between questions, 
and interaction between markers and questions, will be additional contributors to error 
variance in the case of absolute measurement. Figures 4.2 and 4.3 illustrate this 
clearly. Variance sources within the person (examinee) circle, excluding p itself, 
contribute both to relative and to absolute error variance, while variance sources 
outside of the p circle are additional contributors to absolute error variance.  

Figure 4.2  Variance attribution diagram for the relative 
measurement of p in the crossed design p  q  m 
 

 

As before, the universe score variance is simply 2
p. The error variances, however, 

become more complex as the number of facets in the design increases. Here, the error 
variance for relative measurement, 2

δ, is a combination of the three sample-based 
interaction variances (see Figure 4.2). In the error variance expression each estimated 
interaction variance component is divided by the number of observations made for 
each person – the number of markers who marked the person’s essays (or practical 
tasks or creative works) and/or the number of questions, tasks or creative works that 
the person attempted or produced and that were evaluated by the markers: 
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The square root of this error variance is the SEM for relative measurement. The G 
coefficient for relative measurement is, as usual, the between-persons variance 
divided by the combination of between-persons variance and relative error variance: 
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The absolute error variance is comprised of the interaction variances involving 
persons, plus contributions from the main effects of markers and questions and the 
interaction between these two factors (see Figure 4.3).   

Figure 4.3  Variance attribution diagram for the absolute 
measurement of p in the crossed design p  q  m 
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In other words, the error variance for absolute measurement is given by: 
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The square root of expression 4.3 is the SEM for absolute measurement at the level of 
a person by question by marker score: as usual we multiply by nq to find the SEM for 
a person’s total test score (averaged over markers).  

The absolute G coefficient is given by: 
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As before, once we have expressions for the G coefficients and for the SEM we can 
substitute any values that we choose into them for the factor sample sizes (here 
changing the values of nq and nm to indicate alternative numbers of questions and of 
markers, respectively) to see how changes might affect estimation precision. 

This particular 3-factor, or 2-facet, design has featured quite often in real-life 
applications. Interestingly, a typical finding is that the person by question, or, using 
more appropriate terminology for the applications concerned, the person-task 

40 



Conceptualising and interpreting reliability 

interaction variance has proved to be the largest contributor to measurement error, 
with contributions from raters being more modest, which could be explained by rater 
standardisation (Brennan, 2000).   

For example, Shavelson, Baxter and Gao (1993) implemented this design using 
science performance data from the California Assessment Program. The science 
assessment involved five different science tasks and was organised in the familiar 
‘circus’ arrangement. The five tasks were set up at five different stations, and the 
students rotated around the station at timed intervals. A given rubric was used by 
teacher raters to score the students’ performances on a 5-point scale, every task 
performance being independently rated by three different raters. The analysis results 
revealed the student-task interaction to have the highest estimated variance 
component. This component reflected inconsistent performances across the tasks by 
individual students, some students doing better on some tasks than others and vice 
versa. The next largest estimated variance component was associated with between-
students variance. Estimated components relating to the between-rater variance, the 
rater-task variance and the student-rater variance were negligibly small. The absolute 
generalizability coefficient was 0.70. Further analysis confirmed that increasing the 
number of assessment tasks whilst reducing the number of independent raters would 
increase the reliability.  

In the context of large-scale assessment of science performance in the UK, relatively 
important amounts of between-marker variation and marker-question interaction 
variance emerged. (Johnson, 1989, Chapter 7), as did between-question and pupil-
question interaction variance. 

A particularly important area of application for G-theory continues to be the health 
sciences, and in particular the assessment of medical students’ diagnostic and patient 
relationship skills. This type of assessment typically takes a form similar to the circus 
arrangement described above for science practicals. A number of stations are set up, 
the task stimulus at each station being a trained actor simulating a patient with 
particular medical problems and personality. Students move from one station to 
another, dialoguing with the patient and performing a physical examination before 
eventually arriving at a medical diagnosis. As the dialogue and examination progress 
the student is rated, by the ‘simulated patients’ and/or by medical staff, generally 
using a rubric to rate the aspects of performance of interest. In such assessment G-
theory has been used to explore the contributions to measurement error from the tasks 
and the raters, both contributions proving to be important (Govaerts, van der Vleuten, 
& Schuwirth, 2002; Solomon & Ferenchick, 2004; Burch, Norman, Schmidt & van 
der Vleuten, 2008; Murphy, Bruce, Mercer & Eva, 2009).  

This might be an appropriate point to note that this 3-factor (2-facet) design, or more 
comprehensive ones, could be applied in situations where different examination 
candidates attempt essentially different examinations within the same qualification. 
An example would be a ‘layered’ examination, where students are entered by their 
teachers into particular sets of question papers within an examination, each set 
providing access to a restricted sets of grades. Another would be test components in 
which candidates are offered a question choice, such as two essay topics from five in 
a history paper, or three structured questions from six in physics. Here the design 
could be analysed separately for the different candidate subgroups, and measurement 
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consequently estimated for the candidates in that group. An important interpretational 
issue here, however, concerns identification of the student population that the teacher-
selected or self-selected examination candidates represent, and identification of the 
restricted ‘task universe’, or curriculum, to which the results can validly be 
generalised.  

So far we have considered designs in which all the factors are random. In other 
words, the levels of each factor that actually feature in each study are considered to be 
random samples from some larger population (or universe, or domain). The persons 
themselves, whether primary pupils, examination candidates or workplace trainees, 
are considered to be a representative sample of all such individuals, whether past, 
present or future. The test questions, the creative products and the practical tasks are 
similarly considered to be merely samples of all such elements that could have been 
used and evaluated in the assessment process. And the markers, product evaluators or 
workplace assessors, are assumed simply to represent all such individuals, holding no 
special interest in themselves. It is on the basis of these assumptions that we can 
generalise the analysis results of such a design, in particular when attempting to 
identify how to reduce measurement error in a future assessment application.  

But there are situations in which the assumption that a factor is sampled is not 
appropriate. For example, suppose that in a performance art course, such as ballet or 
gymnastics, there are a certain number of movements that all students must learn to 
master, and the number of these is relatively small. A certifying examination could 
feature all of these movements. Similarly, consider a workplace assessment, in which 
assessors evaluate the performance of all trainees on each of a number of required 
job-related tasks. If all the important dance or gymnastic movements, and all the 
relevant job-related tasks, were assessed for every aspiring qualification holder, then 
the factor ‘tasks’ (or ‘movements’) would be considered fixed. Figure 4.4 illustrates 
this ‘mixed model’ design.    

Figure 4.4  Variance partition diagram for the mixed model 
crossed design c  a  t, where c (candidates) and a 
(assessors) are random factors and t (tasks) is fixed 
 

 

In this situation tasks will not be a source of sampling variance, and in consequence 
the between-tasks variance would contribute to absolute measurement error. 
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4.2   Taking account of demographics and other grouping characteristics  

In real-life testing situations we rarely have completely crossed measurement designs. 
Students, for example, are nested within schools (and often also in classes within 
schools), in the sense that any particular student attends one and only one school. The 
students in a particular school might share certain characteristics to do with that 
school – its learning environment, the curriculum taught, and so on. Schools are in 
turn nested within local authorities and often draw their students from particular 
socio-economic areas. Students are further nested within gender, ethnic group and 
socio-economic status. Sometimes shared group characteristics can themselves have 
an effect on test results, and if they are not identified they, too, become hidden facets 
in the design, which might or might not be inflating the apparent effects of one or 
more of the variables that are identified. Let us illustrate this by adding examination 
centre to the pqm model discussed in section 4.1, examination centres being schools, 
colleges or businesses. Figure 4.5 illustrates the new picture of variance partition, 
with p:c indicating that persons are nested within centres.      

Figure 4.5  Variance partition diagram for the crossed design (p:c)qm, where p 
(persons), q (questions) and m(markers) are random factors and c (centres) is fixed 
 

 

Since persons are nested within centres, centre by default joins persons as a 
contributor to ‘valid’ variance. Universe score variance in this design is therefore 
given by the composite expression: 2

p:c + 2
c. The expression for relative error 

variance, 2
δ, will include contributions from all the interactions involving persons 
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The SEM is as usual given by the square root of the error variance, while the 
generalizability coefficients are as usual found by substituting variance component 
estimates and factor sample sizes as appropriate into the respective ratio expressions. 
Optimization proceeds as before, this time by substituting alternative numbers of 
questions and markers into the error expressions and coefficient formulae.  

We could elaborate this type of design by substituting or adding different nesting 
variables for persons, such as gender or socio-economic group. The principle for 
analysis would be the same. All the factors in which persons are nested will contribute 
to ‘valid’ variance, all interaction effects between the factors within the person 
nesting hierarchy and those outside it that involve a random facet would contribute to 
relative and to absolute error variance, and all main effect factors outside of the 
person nesting hierarchy would be additional contributors to absolute error variance 
(as long as these could be assumed to be random or finite random factors, i.e. factors 
whose levels in the data set represent samples from infinite or finite populations). 
Should any of the factors outside of the person nesting hierarchy be fixed, i.e. should 
the levels in the dataset be the only ones that exist or the only ones of interest, then 
the situation changes.  

Factors other than persons might also usefully be recognised as being nested. Test 
questions, for example, might be nested within curriculum objectives, component 
papers, formats, and so on. Markers, too, might be nested, perhaps within subject area, 
length of teaching experience, gender or age group. Any of these nesting variables 
could potentially have an influence on assessment results. If they do, and if they are 
not recognised in the variance analysis, then their effects will simply be wrapped up 
in those of factors and factor interactions that are analysed. It isn’t always possible, 
however, to incorporate all the potentially influencing variables in a reliability study, 
even if they could all be identified, observed and somehow categorised. This is 
because at some point the size of the available dataset will become insufficient to 
provide robust estimates for all the main and interaction effect variance components.  

A recent attempt to explore the likely influence of markers on the results of the 
French baccalauréat, and which involves a nesting variable for markers, is described 
by Suchaut (2008). This study, albeit extremely small scale and relatively informal, is 
a rare example in its field, no research into the reliability of the baccalauréat having 
apparently been published since the 1930s. As a CPD exercise in assessment, Suchaut 
organised a marking study in which around 30 economics and social science teachers 
in two French academies (Dijon and Besançon) independently marked the essays 
(same topic) of three students from their own academy who had passed the 
baccalauréat in this subject field in 2007 and 2008. The teachers who participated 
were generally representative of those practising teachers who might have served as 
baccalauréat markers in the live examination, though they had not necessarily done 
so. Suchaut’s principal aim was to investigate the extent to which markers might 
agree or not in their ratings of students’ work in a baccalauréat examination. 
Secondary interests were to see whether any differences between markers were 
systematic (relative severity/leniency), and what effect their specific subject 
background and their academy might have on their marking behaviour.   

No assessment professional would be surprised to learn that there was an extremely 
large variation in the marks given to any one script by the 30+ markers who marked 
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it, on a 0-20 mark scale. Equally unsurprising is the fact that there was a large 
variation in the average scores of the six students. More surprising might be the fact 
that there was no significant difference between the markers in overall 
severity/leniency terms. There was, though, strong evidence of marker-script 
interaction, different markers having different views about the relative merits of 
different scripts. When invited to articulate their opinions about the scripts, the 
markers showed evidence of often very diverse views about the same piece of work. 
What one marker might consider a superficial treatment of the topic, with poor 
analysis and poor use of support references, another could consider to be a well-
supported and convincing argument.       

Suchaut’s analysis of the resulting set of marks included comparisons of mean scores, 
a simple crossed analysis of variance for each academy separately, and average inter-
marker correlations, all involving significance testing. Yet all of the relevant findings 
could have been identified more effectively through a single comprehensive G study.  

Notwithstanding the extremely small number of scripts considered in the study, we 
can for the purpose of illustration make the assumption that these are a random 
sample from the larger pool of baccalauréat scripts, which they were not in practice. 
We also make the assumption that the markers are a random sample of all potential or 
actual baccalauréat economics and social science markers – they were clearly not, 
although they might have represented the marker population quite well. We have a 
choice with the academies. For maximum generalization we can also treat these two 
academies as a random sample of all such academies, and indeed of all schools who 
submit students for that particular baccalauréat examination. On the other hand, if our 
interest were in those particular two academies and no others then ‘academies’ should 
be considered a fixed factor. Let us assume for present purposes that all three 
variables, scripts, markers and academies are random factors.  

The design would be (sm):a, where s, m and a represent, respectively, scripts, markers 
and academies. Markers and scripts are crossed factors, since every marker in each 
academy marked every script from that academy, and both markers and scripts are 
nested within academies, each marker and each script belonging to one only of the 
two academies (the colon in the design notation conventionally indicates factor 
nesting). The appropriate variance partition diagram for this situation is shown in 
Figure 4.6. 

We can choose to focus on any sector in Figure 4.6, and calculate relative or absolute 
G coefficients and SEMs. For example, if we were interested in estimating how well – 
how reliably – academies had been measured, relatively or absolutely, the ‘valid’ 
variance that we would be interested in would be the between-academies variance. 
Given the assumption that both scripts and markers were randomly sampled (which in 
practice, of course, they were not) then the contributors to error variance here would 
be the between-scripts variance, the between-markers variance, and the confounded 
script-marker interaction variance. If, on the other hand, we were interested in how 
reliably the scripts were differentiated on the basis of the evaluations of all the 
markers who marked them, then the contributors to relative measurement error will be 
inter-marker variation and script-marker interaction.  
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Figure 4.6  Variance partition diagram for the nested design (sm):a, where s (scripts), m 
(markers) and a (academies) are random factors  
 

In fact the G coefficient for script differentiation is 0.97, for all 32 markers within an 
academy marking each script. The SEM is 0.42, giving a 95% confidence interval 
around a script score of just over ±0.8 marks on the 20-mark scale. Using the “what 
if?” approach, we find that if a single marker were to have marked any particular 
script then the SEM would be estimated to be 2.36, giving a margin of error of ±4.68 
for each script score. Dual marking would result in a margin of error of ±1.67 and 
triple marking an error margin of ±1.36  

This study is clearly too small-scale in terms of script numbers to be useful in 
practical terms. Also, not only were the markers not randomly sampled from within 
the national pool of potential baccalauréat markers, they had not undergone any kind 
of marker standardisation beforehand. Nevertheless, the results are interesting. Should 
this type of design be implemented on a larger scale, with more scripts and fewer 
multiple markers per script, and random sampling employed, then the results could be 
very informative. 

Another study into marker reliability that could have benefited from the variance 
component approach is described in Sykes et al. (2009). This study aimed to evaluate 
the relative effect on marker consistency of four different forms of senior examiner 
feedback to markers. A total of 33 markers were assigned to one or other of four 
marker groups, or, rather, to one or other of four different forms of feedback 
(‘treatments’ in experimental design terminology). A total of 100 scripts, representing 
the responses of 100 candidates to one question in a GCSE English Higher Tier 
examination, were distributed among five batches of 20 scripts, the batches being 
designed to reflect similar ranges of response quality. All the markers marked all the 
scripts, working through the batches in the same order on consecutive days. But the 
groups of markers were given different amounts and kinds of feedback after marking 
one or more of the batches. The study design can be symbolised as (m:f)  (s:o), 
where m and f represent, respectively, markers and feedback strategies, s and o 
represent, respectively, scripts and occasions of marking (batches). Markers are 
nested within feedback strategies, scripts are nested within occasions, and the two 
nesting hierarchies are crossed with one another, since every marker in every 
feedback group marked every script on every occasion. The variance partition 
diagram is shown in Figure 4.7. 
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Figure 4.7  Variance partition diagram for the mixed model nested 
design (m:f)  (s:o), where m (markers), scripts (s) and occasions (o) 
are random factors and f (feedback strategy) is fixed   
 

 

The data that were analysed comprised differences between markers’ allocated marks 
and ‘reference’ marks, these latter being the marks that had been previously allocated 
to the scripts by a senior examiner (the markers, naturally, were unaware of these 
reference marks). As in Suchaut’s case, an analysis of variance was carried out, once 
again accompanied by significance testing of the various main effects and 
interactions. But the opportunity was not taken to analyse the data set as a G study. 
Had it been, then G coefficients might have been used as effect size indicators for the 
various effects of interest to the researchers (occasions, feedback strategy by 
occasions, markers by occasions), and possible optimization strategies could have 
been explored to help design a more effective study for the future.  

4.3   Assessment reliability at the level of whole examinations 

So far we have been discussing assessment reliability with reference to a single test, 
where the test is of greater or lesser length in terms of constituent test questions. In 
some cases the same general variance analysis procedure described earlier in this 
chapter and in Chapter 3 can be applied to a design that incorporates the separate 
components of an entire examination as simply another factor. This would be 
possible, for example, where examination components resemble each other in form 
and length, and are considered to have equal weight in the whole examination. The 
examinations of some unit-based qualifications take this form. Test questions would 
be nested within unit tests, as might markers. Candidates would be nested within 
centres (and gender, socioeconomic group, and so on). Figure 4.8 provides flavour of 
modelling possibilities (this is Figure 4.5 with the addition of the extra factor of unit 
tests). 
 
In the design in Figure 4.8, the universe score variance would be a combination of 
person (candidate) variance plus centre variance (as a nesting variable for candidates). 
The measurement error variance would be the combination of variance components 
(adjusted by dividing by the respective factor sample sizes) associated with markers 
and questions, the interaction between markers and questions, and all interactions 
involving markers, questions, centres and persons. The SEM for absolute person 
measurement would as usual be the square root of the measurement error variance, 
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with the measurement error variance itself being a function of main effects, other than 
persons and centres, and interaction effects involving persons and centres, each 
contribution suitably reduced by the relevant factor sample size(s). The 
generalizability study results could be used further, to estimate the effect on 
composite score precision of changing the number of unit tests and/or changing the 
number of test questions within each test.   
 

Figure 4.8  Variance partition diagram for the mixed model nested design (p:c)  
(mq):u, where p (persons), m (markers), u (unit tests) and q (questions) are random 
factors, and c (centres) is fixed   
 

 
 
Often, though, the different components in an examination take very different forms, 
with different but related assessment aims. Thus, in a physics GCSE examination 
there might be an objective test, a structured question paper, a formal practical 
examination, and possibly also a course work element. The components might be 
given equal weight when brought together to produce the composite final examination 
mark. Or they might be differentially weighted according to some given criterion. One 
particular strategy that has been shown to maximise apparent score reliability for the 
whole examination is to give the highest weight to the most ‘reliable’ component, 
which will usually be the objective test, since this will typically have the largest 
number of test questions. Giving this component too much weight, however, can 
decrease the validity of the observed composite (the total examination mark) as a 
measure of the target composite (Kane & Case, 2000). In other words, the increased 
reliability could be spurious, and bought at the expense of assessment validity.  
 
Where examination components differ in importance and nature (including metric) 
then a univariate generalizability analysis would be inappropriate, and even non-
feasible. A multivariate generalizability analysis would be applicable in such cases 
(see, for instance Brennan, 2001b, and Raykov & Marcoulides, 2008, 2010), or some 
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other multivariate approach. He (2009) offers a useful comprehensive overview of 
issues, methodologies and applications. For an interesting recent and relevant 
application, in which the effects on examination reliability of assigning different 
weights to multiple-choice and free-response components in biology and world 
history examinations were explored, as well as the effects of different numbers of 
questions within each component, see Powers and Brennan (2009).  
 
An aspect of whole-examination reliability that is heavily researched in the UK is 
grade comparability. This can be over-time comparability, between-board 
comparability and even between-subject comparability. Interest in over-time and 
between-subject comparability is not unique to the UK, but between-board 
comparability is. The reason for this is the presence in the qualifications market of 
more than one examining board offering examinations of the same general type, at the 
same level and in the same subjects, inviting the assumption that the respective 
qualifications are interchangeable. Here, too, assessment reliability, as outcome 
replication over different conditions of measurement, is relevant.  
 
The question at issue is the extent to which the grading outcomes for examination 
candidates would vary depending on the board whose examination they had taken. 
The potential factors that could be hypothesised to influence these outcomes will 
include the examination components that comprise the different boards’ examinations, 
the mark schemes used to evaluate candidates’ performances on these components, 
the weighting strategies used when aggregating component outcomes, and the 
procedures used to determine the cut scores that lead to performance grading. It would 
be difficult and costly, even if possible in practice, to design a G study in which the 
effects on measurement error of all these factors might be simultaneously quantified. 
In particular, a random sample of candidates from each relevant board would be 
required to sit the ‘parallel’ examinations of the other boards. Recognising the 
impossibility of this requirement, a variety of different investigative approaches have 
been trialled and used over past decades, most proving disappointingly limited from 
an interpretational point of view (see Newton, Baird, Goldstein, Patrick & Tymms, 
2007, for a comprehensive review). The variance analysis approach has been shown 
to have some potential for meaningful application in this area (Cohen & Johnson, 
1982; Johnson & Cohen, 1983, 1984; Johnson, 2007).    
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5    Reliability estimation and reporting: the way forward? 
 
5.1  The need to report on reliability 
 
It is generally accepted in the UK and elsewhere that awarding bodies and other 
testing agencies should report information on the reliability of their assessments, 
whether the outcomes of this assessment take the form of test scores, mastery 
decisions or criterion-referenced grades. Cronbach, Linn, Brennan and Haertel (1997), 
for example, had this to say: 
 

When a public opinion poll reports what percentage of respondents favor each rival 
candidate, it also reports a margin of error. Agencies responsible for an educational 
assessment system should similarly make clear how much uncertainty is associated 
with any score or summary, particularly with any report released to the public or to 
public representatives. (Cronbach et al., 1997, p.1)    

 
In similar vein the American ‘Joint Standards’ suggest that there is a duty to 
communicate reliability information to the public (AERA/NCME/APA, 1999, 
Standard 2.1, p. 31). Others would agree, whilst at the same time evincing concern 
about the effects that such transparency might have on public trust in the assessment 
system and its outcomes. Newton (2005a, b), for instance, writes about the obligations 
on the part of awarding bodies to communicate with the public about reliability, and 
offers interesting and perceptive accounts of the arguments for and against releasing 
reliability information for public consumption in the UK.   

Hutchison and Benton (2009), too, express the view that awarding bodies should 
provide information about the reliability of public examinations. They emphasise the 
importance of transparency in reliability reporting, which they claim would: 
 

…offer all involved the possibility of weighing up the benefits of a more reliable 
assessment system against the costs in terms of time that could be spent on teaching 
and learning, imposition on the young people concerned, and, in fact, cost, so that 
decisions could be taken on the best available evidence” (Hutchison & Benton, 2009, 
p.34).  

 
Ofqual has responded to the general call for more transparency in this area, by 
launching a 3-strand reliability programme (Boyle, Opposs and Kinsella, 2009; 
Opposs, 2009): 
 
Strand 1 – generating evidence on reliability 
Strand 2 – interpreting and communicating evidence on reliability 
Strand 3 – exploring public understanding of reliability and developing  

Ofqual policy on reliability. 
  
This report is one in a series of related research reports that together represent the first 
outcome of Strand 2.  
  
Initial relatively informal explorations of the public understanding of examination 
validity and reliability, carried out under Strand 3, have confirmed that members of 
the public, albeit particularly interested members of the public at this stage – pupils, 
teachers, examiners, employers – can to some degree distinguish between ‘inherent’ 
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or ‘inevitable’ error in measurement and ‘avoidable’ error (Ipsos MORI, 2009; Boyle, 
Opposs & Kinsella, 2009). They tend to be intolerant of avoidable error, a prime 
example of which would be marker differences or inconsistency, as also, apparently, 
are members of the public in France (publication of the small-scale study on likely 
marker error in the baccalauréat examination described in Chapter 4 – Suchaut (2009) 
– caused a stir in the French press).  
 
Interestingly, the evidence is that members of the public are relatively tolerant about 
what they perceive as ‘inherent’ errors, when perhaps they would be less so if they did 
indeed understand more than they do about the business of examining. In particular, 
there is recognition that tests and examinations cannot cover every detail in the 
curriculum, and that some topic selection must take place. Where testing space 
severely constrains examination content in this sense, it seems to be accepted that 
some candidates will likely benefit when their revised topic “comes up” and others 
will suffer when their topics do not. And yet measurement error that arises from this 
source is not ‘inherent’ and unavoidable. It could be avoided through use of longer 
tests, with the additional costs and testing time demands that would be associated with 
this (see Hutchison and Benton, 2009, p.34, for relevant discussion), and/or 
curriculum reduction.  
 
If the public is to be educated about technical issues in assessment, and if reliability 
information is to be routinely published alongside examination results, then we need 
to decide which form of reliability measure would be the most appropriate one to use. 
There are basically two choices: a variance ratio (reliability coefficient), and a 
standard error of measurement. [We do not include here any kind of misclassification 
index, given their very limited value as valid comments on assessment reliability.]  
 
It might be true that a standard error of measurement is likely to be better understood 
in the public domain than a reliability coefficient, especially when converted into a 
margin of error, from which the familiar 95% confidence interval can be calculated 
around test scores (given the assumption that errors are Normally distributed). 
Skurnick and Nuttall (1968) thought so, making a plea for SEM reporting over 40 
years ago in the context of external examinations in the UK. In the US this view is 
also held by some. When reflecting on his lifetime’s work in this field, Cronbach 
observed that:  
 

I am convinced that the standard error of measurement … is the most important single 
piece of information to report regarding an instrument, and not a coefficient. The 
standard error, which is a report of the uncertainty associated with each score, is easily 
understood not only by professional test interpreters but also by educators and other 
persons unschooled in statistical theory, and also to lay persons to whom scores are 
reported. (Cronbach & Shavelson, 2004, p.413). 

 
But is the notion of a reliability coefficient really so difficult to comprehend, giving 
us as it does an idea in proportional terms of how much ‘noise’ there is in the results 
of an assessment process? Perhaps not. Coefficients still have a role to play in the 
reporting of assessment reliability in some contexts.  
 
What remains is to decide how to produce the most valid and meaningful indicators of 
reliability for reporting purposes, and this depends on how we define ‘reliability’ 
itself.  
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5.2  Reliability as replicability 
 
If we conceive of assessment reliability as the degree to which we can expect an 
assessment outcome for a single examination candidate to be repeated, or replicated, 
under different conditions of measurement (and evaluation), particularly when 
multiple sources of measurement error are at play, then the investigative approach to 
use is variance analysis. Variance analysis based on appropriate designs, whether 
prospective or retrospective, provides us with a tool to estimate score reliability as 
outcomes replication over some given ‘universe of generalisation’, by quantifying the 
contributions to measurement error of identifiable and ‘approachable’ factors, which 
are necessarily sampled in the assessment process. Variance analysis equally allows 
us to identify practical strategies for reducing measurement error, some of which will 
be more feasible and more cost-effective to implement than others.  
 
The advantage of G-theory, the variance analysis approach, over calculation of 
classical reliability indices lies in its ability to handle several error-relevant factors 
simultaneously. In other words, the variance analysis approach is not restricted to the 
practice within classical True Score Theory of addressing “one variable at a time” – 
most typically questions or markers – to the exclusion of others. Analysis models 
reflect reality more comprehensively, and so enable the estimation of more valid 
reliability estimates.  
  
For example, speaking in the context of the ‘simulated patient’ form of assessment 
that is now commonplace in medical education worldwide, Swanson, Clauser and 
Case (1999) comment that: 
 

Because multiple sources of measurement error are present, the statistical 
methods that classical test theory provides for investigating the reproducibility 
of scores (e.g., separate indices of internal consistency and inter-rater agreement) 
are not adequate. Instead, use of the conceptual and analytic tools of generalizability 
theory (G-theory) are [sic] mandatory… (Swanson, Clauser & Case, 1999, pp.75-76) 

 
In this medical training context the principal sources of error variance are medical 
cases, standardised patients (the trained actors portraying patients with particular 
medical conditions), raters, rating schemes and occasions of testing, along with 
interactions among these and between these and the students being assessed. In the 
UK test and examinations context the variance sources will similarly include 
assessment questions and tasks, markers and raters, mark schemes and rating 
protocols, occasions of testing, modes of assessment, and so on.  
 
The main argument of this report is that there is no longer any reason to appeal to 
classical reliability indicators as evidence of assessment reliability. These are all 
limited in scope and, in consequence, limited in usefulness. And they are anyway 
subsumed within the more general sampling-based variance analysis approach that is 
G-theory. These comments apply particularly to the well-known alpha coefficient, 
which is still the most used reliability indicator (Hogan, Benjamin & Brezinski, 
2000), even when much of the time its use is inappropriate. The alpha coefficient is an 
internal consistency coefficient that was conceived for application in a norm 
referencing world. But the world has changed, and so has the importance of 
coefficient alpha. It is no longer “the gold standard for measuring reliability”, as still 
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apparently assumed by many practitioners and as explicitly claimed by at least one 
commercial company whose testing services are routinely used by some vocational 
awarding bodies in the UK. Cronbach himself considered the alpha coefficient to have 
become virtually obsolete, given the modern-day predominance of absolute 
measurement for criterion-referenced cut score applications: “I no longer regard the 
alpha formula as the most appropriate way to examine most data”, he pronounced 
(Cronbach & Shavelson, 2004, p.403). 
 
Unless the aim of our assessment is to use arbitrary cut scores to separate pre-chosen 
proportions of candidates in terms of their relative attainment (the 50 highest scoring 
individuals, the top 10% of attainers, next 15%, etc), then we should be using some 
form of reliability index that is appropriate to absolute measurement. The phi 
coefficient, which we cover in Chapters 3 and 4, is an obvious candidate  
 
It has to be said, though, that variance ratios can have reduced value in the context of 
mastery testing, where it is quite legitimate to accept that at times there will be 
limited, if any, between-person variance: all can pass or all can fail, with most 
candidates expected to be at or near the criterion cut-score. This will be the case in 
much of vocational skills assessment. Here the standard error of measurement, as an 
indicator of ‘noise’ in the assessment results, is particularly valuable. 
 
Most measurement methodologies enable the calculation of standard errors of 
measurement. But only within the framework of G-theory is the estimated 
measurement error generalisable, both beyond the actual set of questions or tasks 
used in the particular assessment application, and also over other factors that 
potentially contribute to measurement error, including markers. While a global 
generalisability analysis provides an estimate of average measurement error for all 
candidates, analysis of data subsets will furnish estimates – conditional SEMs –
specific to particular candidate subgroups, or even to individual candidates (for details 
see Feldt, Steffen and Gupta, 1985; Feldt and Brennan, 1989; Raju, Price, Oshima and 
Nering, 2007).  
 
The principal advantages of G-theory are that: 
  
1. multiple contributions to measurement error can be simultaneously quantified  
2. the reliability indices that result from a generalisability study, whether coefficients 

or standard errors of measurement, are generalisable by virtue of the random 
sampling theory underpinning them  

3. complex sampling designs, including domain sampling and multiple matrix 
sampling, are directly supported by G-theory as a consequence of its ANOVA, 
experimental design heritage 

4. the quantified variance component information can be used to identify ways to 
reduce measurement error in future testing applications (within the constraints of 
practicality and budget), and  

5. the magnitude of measurement error for different candidate subgroups, including 
candidates at different points on the measurement scale, can also be estimated and 
optimised.  
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5.3  Researching reliability 
 
Whether or not reliability information is eventually routinely released to the public, 
and whatever form this information, if released, might take, there has to be an 
obligation on awarding bodies to quality assure their tests and examinations, so that 
their assessment outcomes are as fair as possible to the highest number of candidates. 
This means doing more than carrying out ‘end-of-line’ quality checks, which can 
provide only limited information about how to improve the assessment process, if 
necessary, in the future, and whose results are rarely available in time to rectify any 
injustices done to that year’s examination candidates. What quality assurance 
essentially involves is identification of the kinds of factors that contribute to 
measurement error, quantification of the relative contributions of those factors to 
measurement error, and subsequent use of that information not only to determine 
current levels of reliability but also to guide the redesign of assessment tools, 
practices and procedures before they are used again.        
 
Among awarding bodies in the UK the greatest research investment in recent years 
has been in the area of marker reliability, which is a legitimate operational concern. 
Very much less attention seems to have been devoted to investigating the effect on 
score reliability of the number and nature of the test questions that are put before 
examination candidates, or to exploring the effect of alternative mark schemes. Yet 
examining agencies have long been urged to begin comprehensively investigating the 
separate and joint influences on test and examination scores of sources of 
measurement error other than, though still including, markers, in particular by using 
G-theory (see, for example, Wood, 1991, p.144). 
 
It will typically not be possible to cover all relevant error-contributing variables in a 
single reliability study, or even within an entire programme of research. Indeed, there 
will certainly be occasions when variance analysis is not an option – for example 
when an assessment process cannot adequately be modelled. In other cases an 
analysis might not be worth doing, because its results will not be amenable to useful 
interpretation. But where a generalisability analysis is feasible and potentially 
meaningful, then the higher the number of ‘facets’ that can simultaneously be 
investigated – so that relative contributions to measurement error can be quantified – 
the more valid and interpretable the resulting reliability estimation is likely to be.  
 
When appropriate research is carried out, and reliability findings become available, 
the next step should be to evaluate these findings in terms of implications for future 
examining practice, including the design of examination components and examination 
procedures. The research might suggest that tests should be longer, or that several 
short tests should replace a single long one. Multiple marking might be indicated as 
essential, or confirmed as being unnecessary. Standard setting procedures might be 
modified, and so on.    
 
There will be times, though, when the results of an optimization study cannot in 
practice be fully implemented, given the logistic, temporal and financial constraints 
under which assessment agencies typically operate. Multiple marking is a case in 
point. It is recognised that, despite the serious attention that is given to marker 
standardisation and equally to workplace assessor standardisation in the vocational 
sector, intermarker and intramarker variation (at question level) will inevitably still be 
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present to some extent in the live situation. Indeed, it is also widely accepted that 
there might be ‘drift’ in markers’ overall marking standards and/or in their marking 
consistency as marking progresses through time. If any one candidate’s work is 
evaluated by one and only one marker, then clearly injustices are likely to occur more 
often than if more than one marker marked the work. But the time within which 
thousands of scripts in numerous different qualifications must be processed, combined 
with a limited, albeit large, pool of suitable markers from which to draw, has meant 
that even dual marking has not apparently been the norm in external examining in the 
UK: 
 

Awarding bodies struggle to recruit enough examiners to mark scripts once, let alone 
twice. Double marking of all examination papers is not a feasible option. (Meadows & 
Billington, 2005, p.58)        

 
The rapidly developing introduction into academic examinations of online marking 
could help to alleviate this particular problem, as will the employment of individuals 
other than subject specialists to mark examination components that do not demand 
expert input in the marking process. 
  
Given the particular context of workplace assessment, it is easy to imagine that 
multiple evaluation of task performances will not be any easier for vocational 
qualifications, and here online marking will seldom be an option. Yet being observed 
at work by more than one assessor could be quite intimidating, even if this might be 
feasible in practice. Video recording could unnerve some candidates, is expensive to 
implement in a standardised way, and the resulting recordings are time consuming to 
process. In addition, there are unique factors here that might impinge on the validity 
and the reliability of assessor judgements in the workplace. These are the social and 
professional relationships that must exist between qualification candidates and their 
assessors, when often the assessor is the candidate’s workplace instructor (see Wolf, 
1995, for an insightful discussion on this particular issue). Nevertheless, however well 
internal and external verifiers do their job of assessment regulation, without formal 
studies designed to explore and quantify assessment reliability in this area the actual 
quality of workplace assessment will remain unknown (see Greatorex & Shannon, 
2003, and Greatorex, 2005, for some first tentative explorations). This is a challenge 
that merits attention.  
 
The impact on measurement error of the particular selection of examination questions 
put in front of examinees, or the particular work-relevant tasks that workplace trainees 
are asked to perform, is another aspect calling for investigation. What difference 
would it make to a candidate’s outcome if the topic of an essay question, or the nature 
of the workplace task, were to be changed? What would be the outcome if different 
pieces of achievement evidence had been put together to produce an evidence 
portfolio? There will be limits to the degree to which such questions can be answered 
in practice, but some attention deserves to be given to them nonetheless.  
  
5.4  A final note on the validity risks for reliability 
 
When factors that are known or suspected to impact on test scores are ignored in an 
analysis, i.e. when the underpinning measurement model only partially reflects reality, 
then the resulting reliability measures will be of reduced value, and could even be 
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misleading. We are speaking here of ‘hidden’ factors. Examples include question 
effects and interactions between markers and questions in traditional marker 
reliability studies, candidate demographics and their interactions with conditions of 
assessment, and nesting factors for questions (such as skill areas or formats).  
 
We have described in this report how limited all the classical reliability indicators are 
in this sense. Each explores just one single error-inducing variable: ‘occasions’ in the 
test-retest index, ‘tests’ in indices involving alternative test forms, ‘questions’ (items 
or tasks) in the case of split-half and internal consistency coefficients, including alpha. 
Outcome agreement measures developed for use with nominal scales, of which kappa 
(Cohen, 1960) seems to be the most used, suffer from the same problem.        
 
If we accept reliability as repeatability, or replicability, then we need to be clear what 
the ‘universe of generalisation’ is that this repeatability is referenced against. Some of 
the important factors that in principle comprise the appropriate universe of 
generalisation might be able to be fully represented in the assessment process, and 
hence in the resulting dataset, and would therefore not be measurement error 
contributors. Different item formats, for instance, could all be included, as could 
every major topic within a chemistry curriculum, and all the tasks that a windscreen 
repairer would need to be able to carry out in that occupation. Other factors would 
essentially be sampled, explicitly or implicitly. Principal among these, as we have 
mentioned numerous times throughout the report, will be markers and questions. 
Where factors that could potentially contribute to measurement error are excluded 
from the model underpinning a reliability calculation then the actual universe of 
generalisation could be reduced, and this should be recognised.  
 
On a final note, it is important to remember that in G-theory ‘random factors’ are 
assumed to be factors whose levels are randomly sampled, so that the levels present in 
the dataset (items, markers, essay topics, and so on) can be assumed to represent their 
respective populations or domains, however these are defined. Where the 
‘randomness’ of the factor sampling is not guaranteed, for example when senior 
examiners manually build an examination paper with newly developed questions, then 
the degree to which a reliability coefficient might be generalised will be in doubt.   
 

56 



Conceptualising and interpreting reliability 

References 
 
Ackerman, T.A. (1991). A didactic explanation of item bias, item impact and item 

validity from a multidimensional perspective. Journal of Educational 
Measurement, 29, 67-91.   

AERA/NCME/APA (1999). Standards for educational and psychological testing. The 
‘Joint Standards’ of the American Educational Research Association, National 
Council on Measurement in Education and American Psychological Association. 
Washington, D.C.: American Psychological Association. 

Bachman, L.F. (1990). Fundamental Considerations in Language Testing. Oxford: 
Oxford University Press. 

Baker, K.H. (1939). Item validity by the analysis of variance: an outline of method. 
Psychological Record, 3, 242-248. 

Bechger, T., Béguin, A., Maris, G. & Verstralen, H. (2003). Using classical test 
theory in conjunction with item response theory. Applied Psychological 
Measurement, 27, 319-334. 

Béguin, A.A. & Glas, C.A.W. (2001). MCMC estimation and some model-fit analysis 
of multidimensional IRT models. Psychmetrika 66, 541-562. 

Bock, R.D., Brennan, R.L. & Muraki, E. (2002). The information in multiple ratings. 
Applied Psychological Measurement, 26, 364-375. 

Boyle, A., Opposs, D. & Kinsella, A. (2009). No news is good news? Talking to the 
public about the reliability of assessment. Paper presented at the 35th annual 
conference of the International Association for Educational Assessment (IAEA), 
Brisbane.   

Bramley, T. (2007). Quantifying marker agreement: terminology, statistics and issues. 
Research Matters, Issue 4, 22-28.  

Brennan, R.L. (1992).  Elements of Generalizability Theory (Second edition).  Iowa 
City: ACT Publications (First edition: 1983). 

Brennan, R. L. (2000) Performance assessments from the perspective of 
generalizability theory. Applied Psychological Measurement, 24, 339-353. 

Brennan, R. L. (2001a). An essay on the history and future of reliability from the 
perspective of replications. Journal of Educational Measurement, 38, 295-317. 

Brennan, R.L. (2001b). Generalizability theory. New York: Springer-Verlag. 
Brennan, R.L. (2003). Coefficients and Indices in Generalizability Theory. CASMA 

Research Report: No.1. Iowa City: University of Iowa Center for Advanced 
Studies in Measurement and Assessment. (Available on 
http://www.education.uiowa.edu/casma)  

Brennan, R.L. & Kane, M.T. (1977a). An index of dependability for mastery tests. 
Journal of Educational Measurement, 14, 277-289.  

Brennan, R.L. & Kane, M.T. (1977b). Signal/noise ratios for domain-referenced tests. 
Psychometrika, 42, 609-625. 

Brown, W. (1910). Some experimental results in the correlation of mental abilities.  
British Journal of Psychology, 3, 296-322. 

Brown, W. (1911). The Essentials of Mental Measurement. Cambridge: Cambridge 
University Press. 

Burch, V.C., Norman, G.R., Schmidt, H.G., & van der Vleuten, C.P.M. (2008). Are 
specialist certification examinations a reliable measure of physician competence? 
Advances in Health Sciences Education, 13, 521-533. 

Burt, C. (1947). Factor analysis and analysis of variance. British Journal of 
Psychology, 1, 3-26. 

57 



Conceptualising and interpreting reliability 

Cardinet, J., Johnson, S. & Pini, G. (2009). Applying Generalizability Theory using 
EduG. New York: Routledge.  

Cardinet, J. & Tourneur Y. (1985). Assurer la mesure. Berne: Peter Lang. 
Cardinet, J., Tourneur, Y. & Allal, L. (1976). The symmetry of generalizability 

theory: applications to educational measurement. Journal of Educational 
Measurement, 13 (2), 119-135. 

Cardinet, J., Tourneur, Y. & Allal, L. (1981, 1982). Extension of generalizability 
theory and its applications in educational measurement. Journal of Educational 
Measurement, 18, 183-204, and Errata 19, 331-332. 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and 
Psychological Measurement, 20, 37-46.  

Cohen, L., & Johnson, S. (1982). The generalizability of cross-moderation. British 
Educational Research Journal, 8, 147-158. 

Cortina, J.M. (1993). What is coefficient alpha? An examination of theory and 
application. Journal of Applied Psychology, 78(1), 98-104. 

Cronbach, L J. (1947). Test "reliability": its meaning and determination. 
Psychometrika, 12, 1-16. 

Cronbach, L.J. (1951). Coefficient Alpha and the internal structure of tests. 
Psychometrika, 16, 297-334. 

Cronbach, L.J., Gleser, G.C., Nanda, H. & Rajaratnam, N. (1972). The dependability 
of behavioral measurements: Theory of generalizability for scores and profiles. 
New York: Wiley. 

Cronbach, L.J. & Hartmann, W. (1954). A note on negative reliabilities. Educational 
and Psychological Measurement, 14, 324-346. 

Cronbach, L.J., Linn, R.L., Brennan, R.L. & Haertel, E.H. (1997). Generalizability 
analysis for performance assessments of student achievement or school 
effectiveness. Educational and Psychological Measurement, 57, 373-399. 

Cronbach, L.J., Rajaratnam, N. & Gleser, G.C. (1963). Theory of generalizability: a 
liberalization of reliability theory. British Journal of Mathematical and Statistical 
Psychology, 16, 137-163. 

Cronbach, L.J. & Shavelson, R. (2004). My current thoughts on Coefficient Alpha 
and successor procedures. Educational and Psychological Measurement, 64, 391-
418. 

Dobson, A.J & Barnett, A.G. (2008). An introduction to Generalized Linear Models. 
(Third edition). Boca Raton: Chapman & Hall/CRC. 

Doran, H.C. (2005). The information function for the one-parameter logistic model: is 
it reliability? Educational and Psychological Measurement, 65, 665-675. 

Eisenhart, C. (1947). The assumptions underlying the analysis of variance. 
Biometrics, 3, 1-21. 

Embretson, S. E. & Reise, S. P. (2000). Item response theory for psychologists. New 
York: Psychology Press. 

Evers, A., Van Vliet-Mulder, J.C., Resing, W.C.M., Starren, J.C.M.G., Van Alphen 
de Veer, R.J. & Van Boxtel, H. (2002). COTAN testboek voor het onderwijs 
[COTAN test book for the educational field]. Amsterdam: Boom.  

Feldt, L.S. & Brennan, R. L. (1989). Reliability. In Linn, R. L. (ed), Educational 
measurement, 105-146. New York: American Council on Education/Macmillan. 

Feldt, L.S. Steffen, M. & Gupta, N.C. (1985). A comparison of five methods for 
estimating the standard error of measurement at specific score levels. Applied 
Psychological Measurement, 9, 351-361.   

58 



Conceptualising and interpreting reliability 

Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver & 
Boyd. 

Govaerts, M.J.B., van der Vleuten, C.P.M. and Schuwirth, L.W.T. (2002). Optimising 
the Reproducibility of a Performance-Based Assessment Test in Midwifery 
Education. Advances in Health Sciences Education, 7, 133–145.  

Goldman, B.A., Mitchel, D.E. & Egelson, P.E. (1977). Directory of unpublished 
experimental mental measures (volume 7). Washington, DC: American 
Psychological Association. 

Goldstein, H. (2003). Multilevel Statistical Models. (Third edition). London: Arnold. 
Greatorex, J. (2005). Assessing the Evidence: different types of NVQ evidence and 

their impact on reliability and fairness. Journal of Vocational Education and 
Training, 57, 149-164. 

Greatorex, J. & Shannon, M. (2003). How can NVQ assessors’ judgements be 
standardised? Paper presented at the annual conference of the British Educational 
Research Association, Edinburgh, September. 

Gulliksen, H.O. (1950). Theory of mental tests. New York: Wiley. 
Guttman, L.A. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 

255-282. 
He, Q. (2009). Estimating the reliability of composite scores. Coventry: Office of the 

Examinations and Qualifications Regulator (Ofqual). 
Hogan, T. P, Benjamin, A. & Brezinski, K. L. (2000). Reliability methods: A note on 

the frequency of use of various types. Educational and Psychological 
Measurement, 60, 523-531. Reprinted as Chapter 4 in Thompson (2003). 

Holland, P.W. (1990). On the sampling theory foundations of item response theory 
models. Psychometrika, 55, 577-601. 

Hoyt, C. (1941). Test reliability estimated by analysis of variance. Psychometrika, 6, 
153-160. 

Hutchison, D. & Benton, T. (2009). Parallel universes and parallel measures: 
estimating the reliability of test results. Coventry: Office of the Examinations and 
Qualifications Regulator (Ofqual). 

Huysamen, G.K. (2006). Coefficient Alpha: unnecessarily ambiguous; unduly 
ubiquitous. South African Journal of Industrial Psychology, 32, 34-40. 

Ipsos MORI (2009). Public perceptions of reliability in examinations.  
Available online at:  
http://www.ofqual.gov.uk/files/2009-05-14_public_perceptions_of_reliability.pdf.  

Jackson, R.W.B. (1939). Reliability of mental tests. British Journal of Psychology, 
General Section, 29, 267-287. 

Johnson, S. (1989). National Assessment: The APU Science Approach. London: 
HMSO. 

Johnson, S. (2007). Commentary on judgemental methods. In Newton, P., Baird, J-A., 
Goldstein, H., Patrick, H. & Tymms, P. (eds), Techniques for monitoring the 
comparability of examination standards, 295-300. London: Qualifications and 
Curriculum Authority. 

Johnson, S. (2008). The versatility of Generalizability Theory as a tool for exploring 
and controlling measurement error. In M. Behrens (ed.), Special Issue: 
Méthodologies de la mesure. Hommage à Jean Cardinet. Mesure et Evaluation en 
Education, 31, 55-73. 

Johnson, S. & Bell, J. (1985). Evaluating and predicting survey efficiency using 
generalizability theory. Journal of Educational Measurement, 22, 107-119. 

59 



Conceptualising and interpreting reliability 

Johnson, S. & Cohen, L. (1983). Investigating grade comparability through cross 
moderation. London: Schools Council. 

Johnson, S. & Cohen, L. (1984). Cross-moderation: a useful comparative technique? 
British Educational Research Journal, 10, 89-97. 

Kane, M.T. (1982). A sampling model for validity. Applied Psychological 
Measurement, 6, 125-160.  

Kane, M.T. & Case, S.M. (2000). The reliability and validity of weighted composite 
scores. Applied Measurement in Education, 17, 221-240. 

Kelley, T.L. (1923). Statistical method. New York: Macmillan. 
Kuder, G. & Richardson, M. (1937). The theory of estimation of test reliability. 

Psychometrika, 2, 151-160. 
Linacre, J.M. (1994). Many-Facet Rasch Measurement, 2nd ed. Chicago: MESA 

Press. 
Linacre, J.M. & Wright, B.D. (2002). Construction of measures from many-facet data. 

Journal of Applied Measurement, 2, 486-512. 
Lord, F.M. (1955). Estimating test reliability. Educational and psychological 

measurement, 15, 325-336. 
Lord, F.M. (1980). Applications of Item Response Theory to practical testing 

problems. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 
Lord, F.M. & Novick, M.R (1968). Statistical Theories of Mental Test Scores. 

Reading, MA: Addison-Wesley. 
Marcoulides, G.A. (1993). Maximizing power in generalizability studies under budget 

constraints. Journal of Educational Statistics, 18, 197-206.   
Marcoulides, G.A. (1995). Designing measurement studies under budget constraints. 

Controlling error of measurement and power. Educational and Psychological 
Measurement, 55, 423-428. 

Marcoulides, G.A. (1997). Optimizing measurement designs with budget constraints: 
The variable cost case. Educational and Psychological Measurement, 57, 808-812.  

McCulloch, C.E., Searle, S.E. & Neuhaus, J.M. (2008). Generalized, Linear and 
Mixed Models. (Second edition). Hoboken: Wiley. 

Meadows, M. & Billington, L. (2005). A review of the literature on marking 
reliability. London: National Assessment Agency. 

Mehrens, W.A. & Lehmann, I.J. (1984). Measurement and Evaluation in Education 
and Psychology. New York: Holt, Rinehart and Winston. 

Messick, S. (1989). Validity. In Linn, R. L. (ed.), Educational Measurement. 
Washington, DC: American Council on Education/Macmillan Series on Higher 
Education.   

Moore, G.E. (1965). Cramming more components onto integrated circuits. 
Electronics, 38, 114-117. 

Murphy, D.J., Bruce, D.A., Mercer, S.W. & Eva, K.W. (2009). The reliability of 
workplace-based assessment in postgraduate medical education and training: a 
national evaluation in general practice in the United Kingdom. Advances in Health 
Sciences Education, 14, 219-232.  

Newton, P. (2005a). The public understanding of measurement inaccuracy. British 
Educational Research Journal, 31, 419-442. 

Newton, P. (2005b). Threats to the professional understanding of measurement error. 
Journal of Education Policy, 20, 457-483.  

Newton, P., Baird, J-A., Goldstein, H., Patrick, H. & Tymms, P. (eds) (2007). 
Techniques for monitoring the comparability of examination standards. London: 
Qualifications and Curriculum Authority. 

60 



Conceptualising and interpreting reliability 

Nunnally, J.C. (1967). Psychometric Theory. New York: McGraw-Hill. 
Opposs, D. (2009). Ofqual’s reliability of results programme. Paper presented at the 

Chartered Institute of Educational Assessors’ Third National Assessment 
Conference, London, May. Available online at: 
http://www.ciea.org.uk/upload/conference_2009/presentations/seminar%203.ppt. 

Pearson, K. (1896). Mathematical contributions to the theory of evolution: III 
Regression, heredity and panmixia. Philosophical Transactions, A, 187, 253-318. 

Powers, S. & Brennan, R. L. (2009). Multivariate generalizability analyses of mixed-
format exams. CASMA Research Report: No.29. Iowa City: University of Iowa 
Center for Advanced Studies in Measurement and Assessment. (Available on 
http://www.education.uiowa.edu/casma) 

Raju, N. S., Price, L. R., Oshima, T. C. & Nering, M. L. (2007). Standardised 
conditional SEM: A case for conditional reliability. Applied Psychological 
Measurement, 31, 169-180. 

Raykov, T. & Marcoulides, G. A. (2008). An introduction to applied multivariate 
analysis. New York: Taylor & Francis. 

Raykov, T. & Marcoulides, G. A. (2010, in press). Psychometric Theory. New York: 
Routledge. 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. 
Chicago: University of Chicago Press. 

Robinson, C. (2007). Awarding examination grades: Current processes and their 
evolution. In Newton, P., Baird, J-A., Goldstein, H., Patrick, H. & Tymms, P. 
(eds), Techniques for monitoring the comparability of examination standards,.97-
123. London: Qualifications and Curriculum Authority.  

Schmitt, N. (1996). Uses and abuses of Coefficient Alpha. Psychological Assessment, 
8, 350-353.  

Searle, S.R., Casella. G. & McCulloch, C.E. (2006). Variance Components. (Second 
edition). Hoboken: Wiley. 

Shavelson, R.J., Baxter, G.P. & Gao, X. (1993). Sampling variability of performance 
assessments. Journal of Educational Measurement, 30, 215-232.  

Shavelson, R. & Webb, N. (1991). Generalizability theory: A primer. Newbury Park, 
CA: Sage. 

Shavelson, R. & Webb, N. (2006). Generalizability theory. In Green, J.L., Camilli, G. 
& Elmore, P.B. (eds), Handbook of Complementary Methods in Education 
Research, Chapter 18. London: Lawrence Erlbaum Associates.   

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of 
Cronbach’s alpha. Psychometrika, 74, 107-120. 

Skurnik, L.S. & Nuttall, D.L. (1968) Describing the reliability of examinations. The 
Statistician, 18, 119-128.  

Snijders, A.B. & Bosker, R.J. (1999). Multilevel analysis. London: Sage. 
Solomon, D. J., & Ferenchick, G. (2004). Sources of measurement error in an ECG 

examination: Implications for performance-based assessments. Advances in Health 
Sciences Education, 9, 283-290.  

Spearman, C. (1904a). The proof and measurement of association between two things. 
American Journal of Psychology, 15, 72-101. 

Spearman, C. (1904b). General intelligence objectively determined and measured. 
American Journal of Psychology, 15, 201-292.  

Spearman, C.  (1907). Demonstration of formulae for true measurement of 
correlation. American Journal of Psychology, 18, 161-169.  

61 

http://www.ciea.org.uk/upload/conference_2009/presentations/seminar%203.ppt


Conceptualising and interpreting reliability 

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of 
Psychology, 3, 271-295.  

Spearman, C.  (1913). Correlations of sums and differences. British Journal of 
Psychology, 5, 417-426.  

Stanley, J.C. (1971). Reliability. In R. L. Thorndike (ed.), Educational Measurement, 
(Second edition), Chapter 13, pp 356-442. Washington DC: American Council on 
Education. 

Stigler, S.M. (1989). Francis Galton’s account of the invention of correlation. 
Statistical Science, 4(2), 73-86. 

Suchaut, B. (2008). La loterie des notes au bac. Un réexamen de l’arbitraire de la 
notation des élèves. IREDU Working paper. Dijon: Institute for Research in the 
Sociology and Economics of Education.     

Swanson, D.B., Clauser, B.E. & Case, S.M. (1999). Clinical skills assessment with 
standardized patients in high-stakes tests: A framework for thinking about score 
precision, equating and security. Advances in Health Sciences Education, 4, 67-
106. 

Sykes, E., Novakovic, N., Greatorex, J., Bell, J., Nadas, R. & Gill, T. (2009). How 
effective is fast and automated feedback to examiners in tackling the size of 
marking errors? Research Matters, Issue 8, 8-14. 

Thomson, B. (2003). Score reliability. Thousands Oaks, California: Sage 
Publications.  

Van der Linden, W.J. & Hambleton, R.K. (1997). Handbook of modern item response 
theory. New York: Springer. 

Wolf, A. (1995). Competence-based assessment. Buckingham: Open University 
Press. 

Wood, R. (1991). Assessment and Testing. Cambridge: University of Cambridge 
Local Examination Syndicate. 

Wright, B.D. & Masters, G.N. (1982). Rating scale analysis. Chicago: MESA Press. 
Wright, B.D. & Stone, M.H. (1979). Best test design. Rasch measurement. Chicago: 

MESA Press. 

62 



Conceptualising and interpreting reliability 

63 

First published by The Office of Qualifications and Examinations Regulation in 2010. 
 
© Qualifications and Curriculum Authority 2010 
 
Ofqual is part of the Qualifications and Curriculum Authority (QCA). QCA is an 
exempt charity under Schedule 2 of the Charities Act 1993. 
 


