557 research outputs found

    Deep learning networks with adaptive attention mechanisms for malaria detection in thick smear blood samples

    Get PDF
    This project aims to develop an end-to end deep network to detect malaria parasites from thick smear blood sample images with object detectors. This project uses different objects detectors such as Faster-RCNN, SSD, RetinaNet and YOLO. The model with the best results is YOLO, so adaptive attention mechanisms are implemented in this model, such as Squeeze-and-Excitation (SE) and Convolution Block Attention Module (CBAM).Este proyecto tiene como objetivo desarrollar una red profunda de extremo a extremo para detectar parásitos de la malaria a partir de imágenes de muestras de sangre de frotis gruesos con detectores de objetos. Este proyecto utiliza diferentes detectores de objetos como Faster-RCNN, SSD, RetinaNet y YOLO. El modelo con mejores resultados es YOLO, por lo que en este modelo se implementan mecanismos de atención adaptativa, como Squeeze-and-Excitation (SE) y Convolution Block Attention Module (CBAM).Aquest projecte pretén desenvolupar una xarxa profunda d'extrem a extrem per detectar paràsits de la malària a partir d'imatges de mostres de sang de frotis gruixut amb detectors d'objectes. Aquest projecte utilitza diferents detectors d'objectes com Faster-RCNN, SSD, RetinaNet i YOLO. El model amb millors resultats és YOLO, per la qual cosa s'implementen mecanismes d'atenció adaptativa en aquest model, com el Squeeze-and-Excitation (SE) i el Convolution Block Attention Module (CBAM)

    Keras R-CNN: library for cell detection in biological images using deep neural networks

    Get PDF
    Background: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results: We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow (https://github.com/broadinstitute/keras-rcnn). We demonstrate the command line tool’s simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Conclusions: Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection

    Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks

    Get PDF
    Microscopic examination of blood smears remains the gold standard for laboratory inspection and diagnosis of malaria. Smear inspection is, however, time-consuming and dependent on trained microscopists with results varying in accuracy. We sought to develop an automated image analysis method to improve accuracy and standardization of smear inspection that retains capacity for expert confirmation and image archiving. Here, we present a machine learning method that achieves red blood cell (RBC) detection, differentiation between infected/uninfected cells, and parasite life stage categorization from unprocessed, heterogeneous smear images. Based on a pretrained Faster Region-Based Convolutional Neural Networks (R-CNN) model for RBC detection, our model performs accurately, with an average precision of 0.99 at an intersection-over-union threshold of 0.5. Application of a residual neural network-50 model to infected cells also performs accurately, with an area under the receiver operating characteristic curve of 0.98. Finally, combining our method with a regression model successfully recapitulates intraerythrocytic developmental cycle with accurate lifecycle stage categorization. Combined with a mobile-friendly web-based interface, called PlasmoCount, our method permits rapid navigation through and review of results for quality assurance. By standardizing assessment of Giemsa smears, our method markedly improves inspection reproducibility and presents a realistic route to both routine lab and future field-based automated malaria diagnosis

    PlasmoID: A dataset for Indonesian malaria parasite detection and segmentation in thin blood smear

    Full text link
    Indonesia holds the second-highest-ranking country for the highest number of malaria cases in Southeast Asia. A different malaria parasite semantic segmentation technique based on a deep learning approach is an alternative to reduce the limitations of traditional methods. However, the main problem of the semantic segmentation technique is raised since large parasites are dominant, and the tiny parasites are suppressed. In addition, the amount and variance of data are important influences in establishing their models. In this study, we conduct two contributions. First, we collect 559 microscopic images containing 691 malaria parasites of thin blood smears. The dataset is named PlasmoID, and most data comes from rural Indonesia. PlasmoID also provides ground truth for parasite detection and segmentation purposes. Second, this study proposes a malaria parasite segmentation and detection scheme by combining Faster RCNN and a semantic segmentation technique. The proposed scheme has been evaluated on the PlasmoID dataset. It has been compared with recent studies of semantic segmentation techniques, namely UNet, ResFCN-18, DeepLabV3, DeepLabV3plus and ResUNet-18. The result shows that our proposed scheme can improve the segmentation and detection of malaria parasite performance compared to original semantic segmentation techniques

    Object Detection in medical imaging

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Information and Decision SystemsArtificial Intelligence, assisted by deep learning, has emerged in various fields of our society. These systems allow the automation and the improvement of several tasks, even surpassing, in some cases, human capability. Object detection methods are used nowadays in several areas, including medical imaging analysis. However, these methods are susceptible to errors, and there is a lack of a universally accepted method that can be applied across all types of applications with the needed precision in the medical field. Additionally, the application of object detectors in medical imaging analysis has yet to be thoroughly analyzed to achieve a richer understanding of the state of the art. To tackle these shortcomings, we present three studies with distinct goals. First, a quantitative and qualitative analysis of academic research was conducted to gather a perception of which object detectors are employed, the modality of medical imaging used, and the particular body parts under investigation. Secondly, we propose an optimized version of a widely used algorithm to overcome limitations commonly addressed in medical imaging by fine-tuning several hyperparameters. Thirdly, we develop a novel stacking approach to augment the precision of detections on medical imaging analysis. The findings show that despite the late arrival of object detection in medical imaging analysis, the number of publications has increased in recent years, demonstrating the significant potential for growth. Additionally, we establish that it is possible to address some constraints on the data through an exhaustive optimization of the algorithm. Finally, our last study highlights that there is still room for improvement in these advanced techniques, using, as an example, stacking approaches. The contributions of this dissertation are several, as it puts forward a deeper overview of the state-of-the-art applications of object detection algorithms in the medical field and presents strategies for addressing typical constraints in this area.A Inteligência Artificial, auxiliada pelo deep learning, tem emergido em diversas áreas da nossa sociedade. Estes sistemas permitem a automatização e a melhoria de diversas tarefas, superando mesmo, em alguns casos, a capacidade humana. Os métodos de detecção de objetos são utilizados atualmente em diversas áreas, inclusive na análise de imagens médicas. No entanto, esses métodos são suscetíveis a erros e falta um método universalmente aceite que possa ser aplicado em todos os tipos de aplicações com a precisão necessária na área médica. Além disso, a aplicação de detectores de objetos na análise de imagens médicas ainda precisa ser analisada minuciosamente para alcançar uma compreensão mais rica do estado da arte. Para enfrentar essas limitações, apresentamos três estudos com objetivos distintos. Inicialmente, uma análise quantitativa e qualitativa da pesquisa acadêmica foi realizada para obter uma percepção de quais detectores de objetos são empregues, a modalidade de imagem médica usada e as partes específicas do corpo sob investigação. Num segundo estudo, propomos uma versão otimizada de um algoritmo amplamente utilizado para superar limitações comumente abordadas em imagens médicas por meio do ajuste fino de vários hiperparâmetros. Em terceiro lugar, desenvolvemos uma nova abordagem de stacking para aumentar a precisão das detecções na análise de imagens médicas. Os resultados demostram que, apesar da chegada tardia da detecção de objetos na análise de imagens médicas, o número de publicações aumentou nos últimos anos, evidenciando o significativo potencial de crescimento. Adicionalmente, estabelecemos que é possível resolver algumas restrições nos dados por meio de uma otimização exaustiva do algoritmo. Finalmente, o nosso último estudo destaca que ainda há espaço para melhorias nessas técnicas avançadas, usando, como exemplo, abordagens de stacking. As contribuições desta dissertação são várias, apresentando uma visão geral em maior detalhe das aplicações de ponta dos algoritmos de detecção de objetos na área médica e apresenta estratégias para lidar com restrições típicas nesta área

    Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review

    Get PDF
    Deep learning; Malaria diagnosis; Microscopic examinationAprenentatge profund; Diagnòstic de malària; Examen microscòpicAprendizaje profundo; Diagnóstico de malaria; Examen microscópicoMalaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.The project is funded by the Microbiology Department of Vall d’Hebron Universitary Hospital, the Cooperation Centre of the Universitat Politècnica de Catalunya (CCD-UPC) and the Probitas Foundation

    Malarial Diagnosis with Deep Learning and Image Processing Approaches

    Get PDF
    Malaria is a mosquito-borne disease that has killed an estimated a half-a-million people worldwide since 2000. It may be time consuming and costly to conduct thorough laboratory testing for malaria, and it also requires the skills of trained laboratory personnel. Additionally, human analysis might make mistakes. Integrating denoising and image segmentation techniques with Generative Adversarial Network (GAN) as a data augmentation technique can enhance the performance of diagnosis. Various deep learning models, such as CNN, ResNet50, and VGG19, for recognising the Plasmodium parasite in thick blood smear images have been used. The experimental results indicate that the VGG19 model performed best by achieving 98.46% compared to other approaches. This study demonstrates the potential of artificial intelligence to improve the speed and precision of pathogen detection which is more effective than manual analysis
    • …
    corecore