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Abstract 

This project aims to develop an end-to end deep network to detect and count malaria parasites 

from thick smear blood sample images with object detectors. The dataset is provided by Institute 

of Research of Vall d’Hebron-Drassanes. 

Malaria is a severe disease caused by parasites of the genus Plasmodium. [3] Paludism is the most 

common disease in resource-poor settings, with 241 million malaria cases in 2020.[4]  

This project uses different objects detectors such as Faster-RCNN, SSD, RetinaNet and YOLO. The 

model with the best results is YOLO, so adaptive attention mechanisms are implemented in this 

model, such as Squeeze-and-Excitation (SE) and Convolution Block Attention Module (CBAM).  
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1. Introduction 

1.1. Statement of purpose  

The purpose of this project is to develop an end-to end deep network to detect malaria parasites 

from thick smear blood sample images with object detectors with adaptive attention mechanisms 

and see the performance. 

1.2. Requirements and specifications 

Project requirements: 

● Deep learning neural networks: 

○ Faster R-CNN 

○ RetinaNet 

○ SSD 

○ YOLO 

● Libraries python:  

○ PyTorch 

○ Torchvision 

● Adaptive attention mechanisms: 

○ Squeeze and Excitation  

○ Convolutional Block Attention Model  

● Database 

○ Images and labels (json and txt format) 

1.3. Methods and procedures 

This project is part of a larger project in which the BIOCOMSC, DTIM and GPI research groups of 

the UPC, in addition to the Probitas Foundation and the Vall d'Hebron Research Institute, whose 

general objective is to development of an effective, affordable and quality system for the 

automatic detection of malaria, in which they use the YOLO algorithm.  

This project is also continuation of Josep Blazquez's thesis part of a series of works at University’s 

Image Processing Group, of deep learning networks for malaria detection in thick smear blood 

samples using SSD, RetinaNet and Faster R-CNN. The model with the best performance is Faster-

RCNN. 

This project aims to integrate adaptive attention mechanisms to YOLO algorithm and Faster-RCNN. 

The database is from Drassanes Center tropical diseases (part of the Vall d’Hebron Hospital)  

The experiments were done in python scripts and Google Collab, were done on servers of the UPC, 

CALCULA. 
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1.4. Work plan, Milestones and Gantt diagram 

1.4.1. Workplan 

It was decided to separate the work into 5 Work Packages. In the first one, it was necessary to 

learn concepts about Deep Learning. The second package for the analysis of the previous work of 

Josep Balzquez (SSD, RetinaNet & Faster R-CNN) and implementation of YOLO algorithm. The third 

package for applying attention mechanisms to YOLO and Faster-RCNN. To finish, the fourth 

package for writing the thesis with the development, results and conclusions. In Figure 1.2 can be 

seen the Gantt followed. 

Table 1 Work Packages 

Project: Autonomous learning WP ref: WP1 

Major constituent: Learning Sheet 1 of 4 

Short description: 

- Learn concepts about Deep Learning. 

- Connecting to computing servers, CALCULA of the GPI with VPN.  

- Research YOLO algorithm and adaptive attention mechanisms 

Start – end date: 

All semester 

Internal task T1: Stanford Course CS231n Convolutional Neural Networks for 
Visual Recognition, on Youtube. 

Internal task T2: Labs of the Master course in Deep Learning for Artificial 
Intelligence from the UPC. 

Internal task T3: Connecting and configure the VM (virtual machine) 

Internal task T4: Research YOLO algorithm  

Internal task T5: Research adaptive attention mechanisms 

Deliverables: 

Do the labs and watch 
the videos. 

And access correctly to 
the VM. 

 

Project: Analysis and YOLO algorithm implementation WP ref: WP2 

Major constituent: Software and programming Sheet 2 of 4 

Short description: Start date: 22/02/2022 

End date: 13/05/2022 

Deep learning networks for malaria 
detection 

WP1: 
Autonomous 

learning 

WP2: Analysis and 
YOLO algorithm 
implementation 

WP3: Attention 
mechanisms 

implementation 

WP4: Results 
and reports 

Figure 1 Work Plan 
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- Analysis of the previous work of Josep Balzquez (SSD, RetinaNet & Faster R-
CNN) 

- Use the test dataset to see the performance and choose the better one for 
work later. 

- Implementation of the YOLO algorithm, train and test 

 

Internal task T1: Prepare the database and load 

Internal task T2: Understand the code 

Internal task T3: Execute the scripts 

Internal task T4: Analyze the hyperparameters 

Internal task T5: Test the algorithm for select the best option 

Internal task T6: Make modifications if necessary 

Internal task T7: Prepare YOLO algorithm 

Internal task T8: Train and test YOLO 

Deliverables: 

The hyperparameters. 

Find the best model. 

Python scripts. 

 

Project:  Adaptive attention mechanisms implementation WP ref: WP3 

Major constituent: Software and programming Sheet 3 of 4 

Short description: 

Implement the adaptive attention mechanisms (AAM) in the model with highest 
performance (found previously) and also with the YOLO. 

Start date: 13/05/2022 

End date: 15/06/2022 

Start date: 12/09/2022 

End date: 9/10/2022 

Internal task T1: Prepare AAM algorithms 

Internal task T2: Train and test AAM 

Deliverables: 

Pytorch scripts 

 

 

 

Project: Results and reports WP ref: WP4 

Major constituent: Analysis and write the documentation Sheet 4 of 4 

Short description: 

Write the Critical review and the Final Report document. 

Start date T1: 9/04/2022 

End date T1:14/04/2022 

Start date T2:25/05/2022 

End dateT2: 12/10/2022 

Internal task T1: Critical review document 

Internal task T2:  Final Report document 

Deliverables: 

Reports 

1.4.2. Milestone 

WP# Short title Milestone / deliverable Date (week) 

1 Autonomous learning Research  All semester 

2 Analysis and YOLO algorithm Model 09/05/2022 

3 Adaptive attention mechanisms  Models with AAM 03/10/2022 

4 Results and reports Documents 12/10/2022 

Table 2 Milestone 
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1.4.3. Gantt diagram 

 

 

 

Figure 2 Gantt diagram  

1.5. Deviations and Incidences 

- The implementation of adaptive attention mechanisms in Faster-R CNN and YOLO requires 

a modification in the architecture, in the case of Faster-RCNN it is more complicated so I 

could not be completed. 

- For reasons unrelated to the project, it has not been addressed the Bluetooth 

communication between the computer and the mobile, to transmit malaria images taken 

from the mobile through the microscope.  

  

18-Feb 18-Mar 15-Apr 13-May 10-Jun

WP 1 Autonomous learning

WP 2 Analysis and YOLO algorithm
implementation

WP 3 Adaptive attention mechanisms
implementation

WP 5.1 Critical review document

WP 5.2 Final Report document

12-Sep 10-Oct
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2. Malaria 

Malaria is one of the most common infectious diseases worldwide. It is caused by parasites of the 

genus Plasmodium, which is transmitted to humans by a bite of an infected female mosquito of 

the species Anopheles [3].  

Malaria is a severe disease caused by parasites of the genus Plasmodium, which is transmitted to 

humans by a bite of an infected female mosquito of the species Anopheles. The World Health 

Organization carries out a malaria control program on a global scale, focusing on local 

strengthening of primary health care, early diagnosis of the disease, timely treatment, and disease 

prevention. Globally, the burden of malaria is lower than ten years ago [4]. 

Globally, there were an estimated 241 million malaria cases in 2020 in 85 malaria endemic 

countries (including the territory of French Guiana), increasing from 227 million in 2019 [4]. 

Malaria-related mortality has a very high association with poverty rates, and the disease is most 

prevalent in low and middle-income countries. [5].  

The COVID-19 pandemic has resulted in unprecedented challenges to health systems worldwide, 

including the control of non-COVID-19 diseases. Malaria cases and deaths may increase due to the 

direct and indirect effects of the pandemic in malaria-endemic countries, particularly in sub-

Saharan Africa [6]. 

2.1. Thick and thin blood smear 

● A thick blood smear is a drop of blood on a glass slide. Thick blood smears are most useful 

for detecting the presence of parasites, because they examine a larger sample of blood. 

(Often there are few parasites in the blood at the time the test is done.) [2] 

● A thin blood smear is a drop of blood that is spread across a large area of the slide. Thin 

blood smears help doctors discover what species of malaria is causing the infection.[2] 

(A)Thick blood smear                 (B) Thin blood smear 

White Blood Cell nuclei (WBC), Red Blood Cell (RBC) and Trophozoites (T) 

Microscopic visualization of thin blood smears permits to distinguish the species of Plasmodium, 

due to the morphology of erythrocytes and the distinctive features depending on the type of 

Figure 3 Examples of thick and thin blood smear [1] 
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specimen infection. Thick blood smears are more efficient and have more sensitivity than thin 

blood smears [7]. 

2.2. Diagnosis methods 

Several techniques are available and used to detect directly or indirectly the presence of malaria 

parasites in blood.  

● Microscopic examination 

● Quantitative Buffy Coat (QBC) 

● Rapid Diagnostic Tests (RDTs) 

● Polymerase Chain Reaction (PCR) 

● LAMP 

This thesis focuses on microscopic examination, this way we have a database of images of thick 

blood smear samples for deep learning models. 

Comparative table of malaria diagnostic techniques with its main advantages and disadvantages. 

QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnostic Tests, PCR: Polymerase Chain Reaction, 

LAMP: Loop-Mediated Isothermal Amplification. [1] 

Diagnostic 

technique 
Advantages Disadvantages 

Microscopic 

examination 

Availability, low cost, parasite level 

calculations, specie identification. 

Expert personal requirement, difficult to 

reproduce. 

Quantitative Buffy 

Coat (QBC) 

Fast preparation, high sensitivity. Expert personal requirement, 

fluorescence microscopy, specific 

instrumentation. 

Rapid Diagnostic 

Tests (RDTs) 

Fast preparation, easy handling, low 

cost, specie identification. 

False-negative and false-positive results. 

Mainly, low parasite density, HRP2/3 gene 

deletions, prozone effect, low sensitivity 

with P.ovale and P.malariae infections. 

PCR High sensitivity and specificity, specie 

identification. 

Specific instrumentation, difficult to 

implement in endemic areas and 

expensive. 

LAMP High sensitivity and specificity, specie 

identification, does not need 

thermocyclers. 

Specific instrumentation and expensive. 

Table 3 Comparative table of malaria diagnostic techniques with its main advantages and 

disadvantages. [1] 
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3. State of the art in object detection 

3.1. Image processing techniques 

Optical microscopy examination of blood smears is the “gold standard” technique for malaria 

diagnosis, although is a time-consuming method, depends on the experience of the microscopist 

and results are difficult to reproduce. New techniques based on digital imaging analysis by deep 

learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of 

infectious diseases. Systems based on Convolutional Neural Networks for image malaria parasite 

detection emulate the microscopy visualization of an expert. Automation provides a faster and 

low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic 

diagnosis, which permits image capture and software identification of parasites. In addition, image 

analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, 

or Neglected Tropical Diseases in endemic areas with low resources. The implementation of 

automated diagnosis by using mobile phone applications and new digital imaging technologies in 

low-income areas is a challenge to achieve. Moreover, automating the movement and focusing of 

the samples in the microscope by hardware implementation would systemize the procedure. 

These new diagnosis tools will join the global effort to fight against the malaria pandemic.[1] State 

of the art of the technology used or applied in this thesis 

3.2. Deep learning detection models 

3.2.1. Faster RCNN 

Faster R-CNN is a deep con deep convolutional network used for object detection, based two-stage 

detection. Faster R-CNN improves Fast R-CNN by utilising a region proposal network (RPN) with 

the CNN model. It is a fully convolutional network that simultaneously predicts object bounds and 

objectness scores at each position.[10] 

Faster RCNN has two networks. The first is the RPN for generating region proposals and the second 

network for using these proposals to detect objects. The time cost of generating region proposals 

is much smaller in RPN than selective search, when RPN shares the most computation with the 

object detection network. The architecture is as follows.[17] 

 

Figure 4 Faster R-CNN [10] 
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The anchor boxes play an important role in Faster R-CNN. It is a reference box of a specific scale 

and aspect ratio. By the default there are 9 anchors (3 scales x 3 aspect ratios) at a position of an 

image. Some of the anchor variations are shown in the next figure.[17] 

 

Figure 5 Region Proposal Network (RPN) [10] 

3.2.2. RetinaNet 

The highest accuracy object detectors to date are based on a two-stage approach popularized by 

R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-

stage detectors that are applied over a regular, dense sampling of possible object locations have 

the potential to be faster and simpler but have trailed the accuracy of two-stage detectors thus 

far. The researchers discovered that the extreme foreground-background class imbalance 

encountered during training of dense detectors is the central cause. Loss focuses training on a 

sparse set of hard examples and prevents the vast number of easy negatives from overwhelming 

the detector during training. To evaluate the effective-ness of the loss, they design and train a 

simple density detector, RetinaNet.[12] 

RetinaNet is a one-stage object detection model, unified network composed of a backbone 

network and two task-specific subnetworks. The backbone is responsible for computing a 

convolutional feature map over an entire input image and is an off-the-self convolutional network. 

The first subnet performs convolutional object classification on the backbone’s output; the 

second subnet performs convolutional bounding box regression [12]. 

 

Figure 6 The one-stage RetinaNet network architecture [12] 

The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) backbone 

on top of a feedforward ResNet architecture (a) to generate a rich, multi-scale convolutional 

feature pyramid (b). To this backbone RetinaNet attaches two subnetworks, one for classifying 

anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The 
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network design is intentionally simple, which enables this work to focus on a novel focal loss 

function that eliminates the accuracy gap between our one-stage detector and state-of-the-art 

two-stage detectors like Faster R-CNN with FPN while running at faster speeds. [12] 

3.2.3. SSD: Single Shot MultiBox Detector 

The SSD is a single-stage detection. SSD discretizes the output space of bounding boxes into a set 

of default boxes over different aspect ratios and scales per feature map location. At prediction 

time, the network generates scores for the presence of each object category in each default box 

and produces adjustments to the box to better match the object shape. Additionally, the network 

combines predictions from multiple feature maps with different resolutions to naturally handle 

objects of various sizes.2 [9] 

 

Figure 7 SSD architecture [9] 

The early network layers are based on a standard architecture used for high quality image 

classification (truncated before any classification layers), called the base network. Then it is the 

auxiliary structure to the network to produce detections with the following key features [9]: 

- Multi-scale feature maps for detection. 

Convolutional feature layers to the end of the truncated base network (backbone model). 

These layers decrease in size progressively and allow predictions of detections at multiple 

scales. 

- Convolutional predictors for detection. 

Each added feature layer (or optionally an existing feature layer from the base network) can 

produce a fixed set of detection predictions using a set of convolutional filters. These are 

indicated on top of the SSD network architecture in Fig. 7. The bounding box offset output 

values are measured relative to a default box position relative to each feature map location 

- Default boxes and aspect ratios. 

The default boundary boxes are equivalent to anchors in Faster R-CNN. The default bounding 

boxes are associated with every feature map cell at the top of the network. These default 

boxes tile the feature map in a convolutional manner such that the position of each box 

relative to its corresponding cell is fixed. 

3.2.4. YOLO: You Only Look Once 

YOLO is a single shot detector, which means that it only looks at the image once to make the 

prediction in the bounding boxes. YOLO frame object detection as a regression problem to spatially 

separated bounding boxes and associated class probabilities. A single neural network predicts 
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bounding boxes and class probabilities directly from full images in one evaluation. Since the whole 

detection pipeline is a single network, it can be optimized end-to-end directly on detection 

performance.[8] 

 
Figure 8 YOLO architecture [8] 

The initial convolutional layers of the network extract features from the image while the fully 

connected layers predict the output probabilities and coordinates. 

YOLO imposes strong spatial constraints on bounding box predictions since each grid cell only 

predicts two boxes and can only have one class. Since the model learns to predict bounding boxes 

from data, it struggles to generalize to objects in new or unusual aspect ratios or 

configurations. The model also uses relatively coarse features for predicting bounding boxes since 

our architecture has multiple downsampling layers from the input image. A small error in a large 

box is generally benign but a small error in a small box has a much greater effect on IOU.[8] 

3.3. Adaptive Attention Mechanisms 

The attention mechanism is inspired by the human vision, which tends to selectively focus on parts 

of information and ignore others. In deep learning, attention mechanisms have been widely used 

in conjunction with the existing neural network models to assign different weights to the different 

parts of the model by which more critical feature representations (what and/or where) can be 

obtained to optimize the model. 

3.3.1. Channel Attention 

The channel attention focuses on “what” is meaningful given an input image and it is usually in the 

higher layers since there is abundant semantic information but less positional information. With 

object of different sizes, may have a negative impact on other objects. To compute the channel 

attention efficiently, the spatial dimension of the input feature map is squeezed. [15] 

 
Figure 9 Channel Attention Module [15] 

Channel attention performs feature recalibration with respect to the channel dimension and 

utilizes both max-pooling outputs and average-pooling outputs with a shared network. With the 

average-pooling we can identify discriminative regions of an object and with the max-pooling it 
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can be more beneficial for small object. The squeeze-and-excitation module uses average-pooling 

[14] and convolutional-block-attention-module uses both [15]. 

We first aggregate spatial information by using both average-pooling and max-pooling operations, 

generating two different spatial context descriptors: 𝑭𝑎𝑣𝑔
𝑪   and 𝑭𝑚𝑎𝑥

𝑪 . Both descriptors are then 

forwarded to a shared network to produce our channel attention map 𝑀𝐶 ∈ ℝ𝐶×1×1.The shared 

network is composed of multi-layer perceptron (MLP) with one hidden layer. To reduce parameter 

overhead, the hidden activation size is set to ℝ𝐶/𝑟×1×1, where r is the reduction ratio. After the 

shared network is applied to each descriptor, we merge the output feature vectors using element-

wise summation.[15] 

 

The channel attention is computed as: 

𝑀𝑐(𝑭) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭))) 

( 1 ) 

= 𝜎 (𝑾𝟏 (𝑾𝒐(𝑭𝑎𝑣𝑔
𝑪 )) + 𝑾𝟏 (𝑾𝒐(𝑭𝑚𝑎𝑥

𝑪 ))) 

where 𝜎 denotes the sigmoid function, 𝑾𝒐 ∈ ℝ𝐶/𝑟×𝐶, and 𝑾𝟏 ∈ ℝ𝐶×𝐶/𝑟. 

3.3.2. Spatial Attention 

The spatial attention focuses on “where” as an informative part. Lower layers of a network contain 

abundant positional information but less semantic information, we only apply spatial attention to 

several lower layers of a detection network, is complementary to channel attention. [15] 

 

Figure 10 Spatial Attention Module [15] 

We first apply average-pooling and max-pooling operations along the channel axis and 

concatenate them to generate an efficient feature descriptor. Applying pooling operations along 

the channel axis is shown to be effective in highlighting informative regions. On the concatenated 

feature descriptor, we apply a convolution layer to generate a spatial attention map 𝑀𝑆(𝐅) ∈

ℝ𝐻×W. which encodes where to emphasize or suppress. We describe the detailed operation below. 

We aggregate channel information of a feature map by using two pooling operations, generating 

two 2D maps: 𝑭𝑎𝑣𝑔
𝑺  ∈  ℝ1×𝐻×W and 𝑭𝑚𝑎𝑥

𝑺  ∈  ℝ1×𝐻×W  [15]. 

The spatial attention is computed as: 

𝑀𝑆(𝑭) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭)]))  = 𝜎 (𝑓7×7 ([𝑭𝑎𝑣𝑔
𝑺 ; 𝑭𝑚𝑎𝑥

𝑺 ])) 

( 2 ) 

where 𝜎 denotes the sigmoid function and 𝑓7×7 represents a convolution operation with the filter 

size of 7 × 7. 
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3.3.3. SE: Squeeze and Excitation  

Squeeze-and-Excitation Networks introduce a building block for CNNs that improves channel 

interdependencies at almost no computational cost. It can be easily added to existing 

architectures. SE add parameters to each channel of a convolutional block so that the network can 

adaptively adjust the weighting of each feature map.[18] 

SE module allows the network to perform feature recalibration whereby the network learns to use 

global information to selectively emphasize informative features and suppress less useful ones 

[14]. The block is connected after the final convolutional layer, to the block before the residue is 

added to the jump connection. The intuition behind this is to keep the jump connection branch as 

clean as possible to facilitate identity learning. 

 

Figure 11 Squeeze and Excitation block [14] 

First, a feature transformation (such as a convolution operation) is performed on the input 

image X to get features U. Next, we perform a squeeze operation to get a single value for each 

channel of output U. After, we perform an excitation operation on the output of 

the squeeze operation to get per-channel weights. 

Finally, once we have the per-channel weights, the final output of the block is obtained by rescaling 

the feature map U with these activations. [19] 

The role this operation performs at different depths differs throughout the network. In earlier 

layers, it excites informative features in a class-agnostic manner, strengthening the shared low-

level representations. In later layers, the SE blocks become increasingly specialised, and respond 

to different inputs in a highly class-specific manner. As a consequence, the benefits of the feature 

recalibration performed by SE blocks can be accumulated through the network. [14] 

 

Figure 12 SE-Inception and SE-ResNet module [14] 
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To integrate SE blocks with existing state-of-art architectures (Fig. 13). The performance 

improvements produced by SE units are fairly robust to their location, provided that they are 

applied prior to branch aggregation. [14] 

 

Figure 13 SE block integration designs [14] 

In Fig. 13 We can see different integration strategies for the SE block. The standard SE block is 

applied right after the final convolutional layer of the architecture, in this case of a Residual 

Network, right before the merging of the skip connection. The SE-PRE configuration was 

constructed by placing the SE block at the start of the block, before the first convolutional layer, 

while SE-POST did the opposite by placing it at the end of the block (after the merging of the skip 

connection). Finally, the SE-Identity block applied the SE-module in the skip connection branch 

itself, parallel to the main block, and is added to the final output as a normal residual. 

3.3.4. CBAM: Convolutional Block Attention Module  

The CBAM has two sequential sub-modules: Channel Attention and Spatial Attention. The 

intermediate feature map is adaptively refined through the CBAM module at every convolutional 

block of deep networks. [15] 

 
Figure 14 CBAM module [15] 

CBAM takes in a tensor containing the feature maps from the previous convolutional layer and first 

refines it by applying channel attention. Subsequently this refined tensor is passed to spatial 

attention, thus resulting in the output refined feature maps.  

Two modules can be placed in a parallel or sequential manner. It is found that the sequential 

arrangement gives a better result than a parallel arrangement. For the arrangement of the 

sequential process, experimental result shows that the channel-first order is slightly better than 

the spatial-first. In Fig. 15 shows the exact position of our module when integrated within a 

ResBlock. We apply CBAM on the convolution outputs in each block.[15] 

 
Figure 15 CBAM integrated with a ResBlock in ResNet [15] 



 

21 
 

4. Methodology / project development 

4.1. Dataset and annotations 

The database is composed of a total of 2570 images with their respective labels in JSON format 

and was provided by the Institute of Research of Vall d’Hebron-Drassanes.  

It is necessary to split randomly the database one time into three: 

- 80% for training dataset, 2057 images. 

- 15% for validation dataset, 384 images. 

- 5% for testing dataset, 129 images. 

It is verified that all the images have the file of the labels, in this project 3 images were found 

without labels that are not considered for the rest of the rpoject. 

The JSON format is like the Fig. 16. 

 

Figure 16 JSON annotation example 

The JSON file contains different information, such as the name, the quality of the microscope, 

annotations, among others.  

We use the 'uuid' that matches the image name to match it with its respective JSON file. In the 

‘annotations’ section, we have the list of the annotations, each with their bounding box 

coordinates, the disease, and the label.  
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Table 4 shows the annotations of the labels in all three datasets and in total. The ‘Leukocyte’, 

‘Uncertain’ and ‘Artifact’ label have ‘Unclear/Undefined’ as disease, instead the ‘Parasite’ has 6 

types of malaria as disease. 

Annotation - label Training Validation Test Total 
Leukocyte 7532 1376 464 9372 
Parasite 16415 2717 863 19995 
Uncertain 3472 549 207 4228 
Artifact 2202 355 125 2682 

TOTAL 29621 4997 1659 36277 

Table 4 Annotations - label 

The Table 5 shows the annotations of each disease in all three datasets, and in total. 

Annotation - disease Training Validation Test Total 
Malaria small trophozoite plasmodium spp 

15168 2506 773 18447 
Malaria mature trophozoite plasmodium spp 

780 137 52 969 
Malaria schizont plasmodium spp 

289 40 24 353 
Malaria trophozoite plasmodium spp  

37 6 3 46 
Malaria gametocyte plasmodium falciparum 

113 22 7 142 
Malaria gametocyte plasmodium spp 

28 6 4 38 
Unclear/Undefined. 

13206 2280 796 16282 
Total malaria 

16415 2717 863 19995 
TOTAL 

29621 4997 1659 36277 

Table 5 Annotations - disease 

There are not enough annotations of all types of diseases. Therefore, it has been decided to 

summarize the labels and disease in 4 classes: 

0. Background 

1. Leukocyte 

2. Malaria trophozoite 

3. Malaria mature trophozoite 

In the background goes ‘Uncertain’ and ‘Artifact’ labels because there are irrelevant for the 

training. The Leukocytes are all white blood cells annotations. Malaria trophozoite and Malaria 

mature trophozoite because there are the most relevant parasites. 

This project also needs the labels in txt format for the YOLO model, in the following format:  
Class    X_center   Y_center    width_yolo    height_yolo 

Where:  

𝑋𝑐𝑒𝑛𝑡𝑒𝑟 =
posX +  

width
2

imgwidth
                       𝑌𝑐𝑒𝑛𝑡𝑒𝑟 =

posY + 
height

2
imgheight

                         

( 3 ) 
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widthyolo =
width

imgwidth
                              heightyolo =

height

imgheight
 

( 4 ) 

imgheight , imgwidth, imgchannels = 𝑖𝑚𝑎𝑔𝑒. 𝑠ℎ𝑎𝑝𝑒 

( 5 ) 

An example of the labels in txt format: 

 
Figure 17 txt annotation example 

For the YOLO implementation, we consider the following classes: 

0. Leukocyte 

1. Malaria trophozoite 

2. Malaria mature trophozoite 

4.2. Adaptative attention Mechanism 

To add the SE and CBAM modules to YOLO, we must modify the architecture and add the code to 

make it work since it is not integrated in YOLOv5. We must modify three files: common.py, yolo.py 

and the yaml file of the architecture and each one should have a different yaml file of the 

architecture.  

4.2.1. SE - YOLO 

In this project we follow some the integration proposals of Squeeze-and-Excitation, Fig 13, like the 

standard SE block, SE pre block, SE post block, and a combination of the pre and post block. And 

two others according to some examples and papers [16]. In total, 6 different architectures were 

made:  

1. Standard SE: SE after the residual and before the concatenation. 

2. SE pre block: SE before the residual. 

3. SE post block: SE after the concatenation. 

4. SE pre and post block: Combination between pre and post block 

5. SE other: according to paper [16] about an Attention Mechanism for Small Object 

Detection on Satellite Images. 

6. SE backbone: SE at the end of the backbone. 

 

In Fig 18 we can see the example of the architecture that must be followed for the SE backbone, 

all the architecture diagrams are in the Appendices A, as well the code implementation. 
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Figure 18 SE backbone architecture 

4.2.2. CBAM - YOLO 

The details of the implementations of the code files are in the Appendices B. 

CBAM module needs to go after the convolutions, C3 block, to facilitate the architecture and avoid 

channels errors, a C3_CBAM block is created, this block will only be in the backbone, see Fig 19. 

 

Figure 19 CBAM architecture 
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4.3. Model Evaluation 

F_score and mean Average Precision (mAP) are adopted as the evaluation criteria. F_score finds 

the most optimal confidence score threshold where precision and recall give the highest F1 score. 

The F1 score calculates the balance between precision and recall. If the F1 score is high, precision 

and recall are high, and vice versa. The precision P (Equation (6)) and the recall R (Equation (7)) are 

defined as:  

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

( 6 ) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

( 7 ) 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗  
𝑃 × 𝑅

𝑃 + 𝑅
 

( 8 ) 

 

where 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are the numbers of true positive cases, false positive cases and false 

negative cases, respectively. A detection map will be considered to be a TP when the IoU exceeds 

the given threshold (e.g., 0.5). The IoU is the overlap ratio between the predicted box and the 

ground truth, defined as:  

𝐼𝑜𝑈 =
area(A)  ∩  area(B)

area(A)  ∪  area(B)
 

( 9 ) 

where 𝐴 and 𝐵 are the ground truth and the predicted box. 
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5. Results 

5.1. Faster RCNN, RetinaNet and SSD results 

For development of the models, is necessary use a pre-trained backbone on the COCO dataset, 

other wise a large database would be needed. 

This project uses the hyperparameters of Josep Blazquez's thesis: 

Model Optim. Lr Momen. Weight decay 
Faster RCNN SDG 1,0E-03 0,900 5,00E-04 

Retina Net SDG 1,0E-03 0,900 5,00E-03 

SSD SDG 1,0E-04 0,900 5,00E-04 

Table 6 Hyperparameters from Josep Blazquez’s work 

In Appendices C are the graphs of the losses and metrics of each model. 

This project has 218 more images in the database than Josep Blazquez's project, but we still come 

to the same conclusions. Faster RCNN works better than the SSD and RetinaNet. And we reach this 

result with an epoch of 120 for faster RCNN and SSD, instead for RetinaNet we need an epoch of 

60, RetinaNet achieve very fast compared to the other models. 

In the following table show the summary of the metrics, for validation and testing. 

Validation 

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Faster RCNN 0.8753 0.9331 0.9033 0.9194 0.6152 

RetinaNet 0.9369 0.8155 0.8720 0.9180 0.6101 

SSD 0.9501 0.4789 0.6368 0.8491 0.5351 

Test 

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Faster RCNN 0.8913 0.9638 0.9261 0.9412 0.6390 

RetinaNet 0.9407 0.8719 0.9050 0.9489 0.6513 

SSD 0.9562 0.5599 0.7063 0.9133 0.5842 

Table 7 Summary of metrics, Faster RCNN, Retina Net and SSD 

If we compare with Josep's work, we will see that the metrics improves, since we have more 

images, and we have to take into account that the distribution of the images is not exactly the 

same, for example, an image that he had for training dataset I could have it in the test dataset, that 

also influences the result of the metrics. The comparation is in the following table: 

Test 

Model 
Josep 

F-score 
F-score 

Josep 

mAP@.50 
mAP@.50 

Josep 

mAP@.50:.95 
mAP@.50:.95 

Faster RCNN 0.9120 0.9261 0.9320 0.9412 0.6290 0.6390 

RetinaNet 0.9030 0.9050 0.9370 0.9489 0.6480 0.6513 

SSD 0.7150 0.7063 0.8810 0.9133 0.5690 0.5842 

Table 8 Comparison of metrics with the results of Josep Blazquez 
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5.2. YOLO results 

For development of the model, is necessary use a pre-trained weight, yolo5x.pt. since we do not 

have a large dataset. 

We have three options for the optimizer, SDG, adamW and adam, in the image below we can see 

that works much better with SDG optimizer. 

 

Figure 20 YOLO - optimizer loss 

For the hyperparameters, YOLO has by default (hyp.scratch-low) : 

- 𝑙𝑟0 = 0.01 the initial learning rate 

- 𝑙𝑟𝑓 = 0.01 the final OneCycleLR learning rate (𝑙𝑟0 ∗  𝑙𝑟𝑓)   

- 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.937  

-  𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 =  5𝑒 − 4, among others. 

But there is another type of configuration, integrate in YOLO ,  hyp.scratch-med, that we can use 

l𝑟𝑓 = 0.1.  In the Fig 21, we can see that we have a better performance with the l𝑟𝑓 = 0.1 of the 

hyp.scratch-med.yaml file. 

 

Figure 21 Hyperparameter search 
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We train the model until 30 epochs with a batch of 8 images, with the hyperparameters from YOLO. 

  

Figure 22 YOLO - Loss and metrics 

YOLO provides two models: the latest model and the best model. In this experiment the best model 

is found in the epoch 25. The values of the metrics for each model: 

Validation 
Epoch Dataset Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Best -25 Validation 0.8975 0.9198 0.9085 0.9490 0.6513 

Last-30 Validation 0.8978 0.9192 0.9084 0.9490 0.6516 

Test 

Epoch Dataset Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Best -25 Test 0.9210 0.9350 0.9279 0.9440 0.6910 

Last-30 Test 0.9370 0.9020 0.9192 0.9320 0.6820 

Figure 23 YOLO - metrics numbers 

We can see that most of the higher values of F-score are in the best model, now we can compare 

it with the other models in the next table: 

Validation 

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Faster RCNN 0.8753 0.9331 0.9033 0.9194 0.6152 

RetinaNet 0.9369 0.8155 0.8720 0.9180 0.6101 

SSD 0.9501 0.4789 0.6368 0.8491 0.5351 

YOLO 0.8975 0.9198 0.9085 0.9490 0.6513 

Test 

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Faster RCNN 0.8913 0.9638 0.9261 0.9412 0.6390 

RetinaNet 0.9407 0.8719 0.9050 0.9489 0.6513 

SSD 0.9562 0.5599 0.7063 0.9133 0.5842 

YOLO 0.9210 0.9350 0.9279 0.9440 0.6910 

Table 9 Test - Comparison of model metrics 

YOLO is the one who has the best performance with the highest F-score of 0,9279. 
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Figure 24 Examples of detections 

 

5.3. Attention Module results 

By adding the SE and CBAM, the architecture is changed, therefore it needs more training than in 

the case of the normal YOLO. For this reason, training experiments are carried out up to 60 epochs, 

and we use the test database for detection in the 2 models that YOLO gives us, the best model, 

and the last model. 

In total there are 7 experiments, 6 are from SE and 1 from CBAM. Putting them all together in a 

graph would be complicated, that is why the table is very detailed.  

- 1st column: The experiment name. 

- 2nd column: If it is the validation or testing database.  

- 3rd column: YOLO gives us a ‘best’ and a ‘last’ file, so we do tests with each of them.  

- 4th column: The number of the epoch. 

- And the other columns the metrics. 

In the tables [10] [11], those values that are marked with green, is because those values are equal 

or greater than the metric of the YOLO in the epoch 25, the one in the table in red colour. 

Those marked in yellow only have a difference of 0.005 with the value we are comparing, this way 

we know that it is a value that is very close. 

And both tables are sorted by F-score values, from higher to lower. 

In the table [10] of validation, we see that the models with best performance are: 

- SE other with F-score of 0,9157 for the best epoch 59, and 0,9155 for the last epoch. 

- SE backbone with F-score of 0,9121 for the best epoch 58, and 0,9120 for the last epoch 

- CBAM with F-score of 0,9112 for the best epoch 55, and last epoch. 

- SE standard with F-score of 0,9101 for the last epoch and 0,9098 for the best epoch 59. 

In the case of the test evaluation, in table [11], do not happen the same thing, the best 

performance is the basic YOLO architecture, but the most near to this is the CBAM architecture 

with F-score of 0, 9259 in the best epoch 55. 
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Validation 

Model Epoch Precision Recall F-score mAP@.50 mAP@.50:.95 

SE other 
best 59 0,9118 0,9196 0,9157 0,9481 0,6490 

last 60 0,9139 0,9171 0,9155 0,9479 0,6486 

SE backbone 
best 58 0,9018 0,9226 0,9121 0,9431 0,6428 

last 60 0,9015 0,9227 0,9120 0,9414 0,6421 

CBAM 
last 60 0,8858 0,9380 0,9112 0,9463 0,6555 

best 55 0,8857 0,9382 0,9112 0,9460 0,6552 

SE standard 
last 60 0,9094 0,9108 0,9101 0,9432 0,6506 

best 59 0,9101 0,9096 0,9098 0,9432 0,6502 

YOLO best 25 0,8975 0,9198 0,9085 0,9490 0,6513 

SE post 
last 60 0,9066 0,9100 0,9083 0,9497 0,6467 

best 49 0,9064 0,9101 0,9083 0,9497 0,6468 

SE pre 
best 59 0,9338 0,8839 0,9082 0,9494 0,6422 

last 60 0,9326 0,8848 0,9081 0,9494 0,6424 

SE pre and 
post 

last 60 0,8896 0,9204 0,9047 0,9468 0,6426 

best 58 0,8898 0,9201 0,9047 0,9466 0,6427 

Table 10 Compare validation - Attention modules 

 

Test 

Model Epoch Precision Recall F-score mAP@.50 mAP@.50:.95 

YOLO best 25 0,9210 0,9350 0,9279 0,9440 0,6910 

CBAM best 55 0,9350 0,9170 0,9259 0,9420 0,6940 

SE other 
best 59 0,9040 0,9380 0,9207 0,9450 0,6960 

last 60 0,9040 0,9380 0,9207 0,9450 0,6960 

SE pre and post last 60 0,9390 0,9020 0,9201 0,9350 0,6810 

CBAM last 60 0,9060 0,9320 0,9188 0,9480 0,7010 

SE standard 
best 59 0,9160 0,9160 0,9160 0,9370 0,6870 

last 60 0,9160 0,9160 0,9160 0,9370 0,6870 

SE backbone 
best 58 0,9200 0,9060 0,9129 0,9390 0,6870 

last 60 0,9070 0,9130 0,9100 0,9380 0,6750 

SE post 
best 49 0,8930 0,9250 0,9087 0,9330 0,6800 

last 60 0,9130 0,8970 0,9049 0,9280 0,6790 

SE pre and post best 58 0,8950 0,9130 0,9039 0,9280 0,6740 

SE pre 
best 59 0,8920 0,8930 0,8925 0,9230 0,6670 

last 60 0,8920 0,8930 0,8925 0,9230 0,6670 

Table 11Compare test - Attention modules 
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6. Budget 

Consider the following for the budget: 

- All the software used for this project, like Visual Studio Code, are open Source.  

- The project has taken 460 hours, and a salary as a junior engineering of 9€/h. 

- Medium-high range laptop to be able to work comfortably and quickly. The approximate 

cost of a laptop with these characteristics is 1000 €. 

- The project requires many hours of training for the models and testing; therefore, we 

consider a virtual machine with a 16 GB GPU for 4 months, 45€/month. 

- The dataset is a resource created by the Institute of Research of Vall dHebron-Drassanes 

and It is not included. 

The total cost can be summarized as follows: 

 

Item Total 

Software 0 € 

Junior engineer 4320 € 

Laptop 1000 € 

VM GPU 16GB 185 € 

Total Project Cost Estimate 5325 € 

 
Table 12 Project budget 

The total cost estimate is 5325€. 
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7. Conclusions and future development 

After carrying the experiments and obtaining the results of the different models and 

architectures, we can say that the Convolutional Block Attention Module in the backbone of 

the YOLO architecture provides the best performance, reaching an F-score of 0,9257 and mAP 

0.5 of 0,9420. 

Some approaches of future work would be: 

- Combine different attention modules, like the SE with CBAM for a better performance. 

- Add transformers into the architecture. 

- Increase the database with open-source dataset. 
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Appendices: 

A. SE implementation  

- Let’s start with the modification of common.py, this file contains all the classes of the blocks 

that we can use in YOLO, we just have to add the SE class. 

-  

Figure 25 SE class 

- yolo.py: To modify the parse_model function, just add a condition for the SE module, 

otherwise we would have a problems with the channel numbers. 

 

 

Figure 26 SE channel code 

- yaml file: In this file we have the architecture, we must add the layers of SE. 

In this project 6 different architectures were made:  

1. SE backbone: SE at backbone. 

2. Standard SE: SE after the residual. 

3. SE pre block: SE before the residual. 

4. SE post block: SE after the concatenation. 

5. SE pre and post block: Combination between pre and post block 

6. SE other: according to paper [16]. 
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Each architecture must have a different yaml file. In Fig 17 we can see the example of the 

architecture that must be followed for the SE backbone. For other architectures see below this 

section. 

According to the backbone architecture, Fig. 17, only one SE layer should be added in layer 10, we 
also have to change from which layer it has to be concatenated (Concat block) and detect (Detect 
block), since now we have more layers. 

The code of the yaml file would be the following: 

 

Figure 27 SE backbone architecture code 

 

 

 

 

 

 

 



 

36 
 

Next, we show the other architectures with SE that are used in this project: 

 
Figure 28 SE backbone 

 
Figure 29 Standard SE 

  

 

Figure 30 SE pre Figure 31 SE post 



 

37 
 

 

Figure 32 SE pre and post 

 

Figure 33 SE other [16] 
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B. CBAM implementation  

For the implementation of CBAM, a procedure similar to SE is followed, with some differences. 

- Modifications in common.py: To use the CBAM module we need to implement Channel and 

Spatial Attention, so in common.py three classes are added. 

 

Figure 34 Channel Attention class 

 

Figure 35 Spatial Attention class 

 

Figure 36 CBAM class 
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As CBAM has to go after the convolutions, specifically after the YOLO C3 block, we can have a block 

in which everything is already together, for this we create a C3_CBAM class as in Fig 32 

 

Figure 37 CBAM with C3 block 

- yolo.py: To modify the parse_mode function, just add the class name to the condition like the 

others blocks, no need to change the channel numbers. 

 

Figure 38 CBAM channel code 

- yaml file: In the case of the CBAM, we just have to change the name of the C3 block, to 

C3_CBAM in the blocks of the backbone, see the architecture diagram in Fig. 19 and the code 

in the next figure.  

 

Figure 39 CBAM architecture code 
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C. Faster RCNN, RetinaNet and SSD  

Loss graph and metrics of the three models, Faster RCNN, Retina Net and SSD. 

 

Faster RCNN 

Loss 

 
Iterations 

F-score 

 
Epoch 

 
(a) Loss with smoothing 

 
(b) F-score with 0.62 conf. threshold 

mAP@0.50 

 
Epoch 

mAP@0.50:0.95 

 
Epoch 

(c) PASCAL VOC mAP (d) COCO mAP 

Figure 40 Faster RCNN – Loss and metrics 
Orange: training, Blue: validation, Red: test 

 

Faster RCNN Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Validation 0.8753 0.9331 0.9033 0.9194 0.6152 

Test 0.8913 0.9638 0.9261 0.9412 0.6390 

Table 13 Faster RCNN - metric numbers 
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Retina Net 

Loss 

 
Iterations 

F-score 

 
Epoch 

 
(a) Loss with smoothing 

 
(b) F-score with 0.62 conf. threshold 

mAP@0.50 

 
Epoch 

mAP@0.50:0.95 

 
Epoch 

(c) PASCAL VOC mAP (d) COCO mAP 

Figure 41 Retinanet - Loss and metrics 
Orange: training, Blue: validation, Light blue: test 

 

RetinaNet Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Validation 0.9369 0.8155 0.8720 0.9180 0.6101 

Test 0.9407 0.8719 0.9050 0.9489 0.6513 

Table 14 Retina Net - metric numbers 
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SSD 

Loss 

 
Iterations 

F-score 

 
Epoch 

 
(a) Loss with smoothing 

 
(b) F-score with 0.62 conf. threshold 

mAP@0.50 

 
Epoch 

mAP@0.50:0.95 

 
Epoch 

(c) PASCAL VOC mAP (d) COCO mAP 

Figure 42 SSD - Loss and metrics 
Orange: training, Blue: validation, Light blue: test 

SSD Precision Recall F-score mAP@0.50 mAP@0.50:0.95 

Validation 0.9501 0.4789 0.6368 0.8491 0.5351 

Test 0.9562 0.5599 0.7063 0.9133 0.5842 

Table 15 SSD - metric numbers 
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Glossary 

Abbreviations 

BIOCOMSC Computational Biology and Complex Systems, research group in Universitat 

Politècnica de Catalunya. 

 

DTIM   Database Technologies and Information Management Group, research group in 

Universitat Politècnica de Catalunya. 

ETSETB  Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona. 

FN   False negative 

FP   False positive 

GPI Video and Image Processing group at Signal Theory and Communications 
Department in Universitat Politècnica de Catalunya. 

GPU   Graphics Processing Unit 

GT   Ground truth 

IoU   Intersection over Union 

JSON   JavaScript Object Notation 

mAP   mean Average Precision 

RCNN   Region based convolutional neural network 

RPN Region Proposal Network 

SSD   Single Shoot MulitBox Detector 

TN   True negative 
TP   True positive 

UPC   Universitat Politècnica de Catalunya 

VHIR Vall d'Hebron Research Institute 

YOLO  You Only Look One 


