

DEEP LEARNING NETWORKS WITH ADAPTIVE ATTENTION
MECHANISMS FOR MALARIA DETECTION IN THICK SMEAR

BLOOD SAMPLES

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Adriana Mónica Renjifo Herrera

In partial fulfilment

of the requirements for the degree in

Telecommunications Technologies and Services Engineering

Advisor: Elisa Sayrol Clols

Barcelona, October 2022

1

Abstract

This project aims to develop an end-to end deep network to detect and count malaria parasites

from thick smear blood sample images with object detectors. The dataset is provided by Institute

of Research of Vall d’Hebron-Drassanes.

Malaria is a severe disease caused by parasites of the genus Plasmodium. [3] Paludism is the most

common disease in resource-poor settings, with 241 million malaria cases in 2020.[4]

This project uses different objects detectors such as Faster-RCNN, SSD, RetinaNet and YOLO. The

model with the best results is YOLO, so adaptive attention mechanisms are implemented in this

model, such as Squeeze-and-Excitation (SE) and Convolution Block Attention Module (CBAM).

2

Revision history and approval record

Revision Date Purpose

0 25/05/2022 Document creation

1 12/10/2022 Document revision

2 18/10/2022 Document approved

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Adriana Mónica Renjifo Herrera adriana.monica.renjifo@estudiantat.upc.edu

 Elisa Sayrol Clols, Project Supervisor elisa.sayrol@upc.edu

Written by: Reviewed and approved by:

Date 18/10/2022 Date 18/10/2022

Name Adriana Mónica Renjifo Herrera Name Elisa Sayrol Clols

Position Project Author Position Project Supervisor

3

Table of contents

List of Figures 5

List of Tables: 7

1. Introduction 8

1.1. Statement of purpose 8

1.2. Requirements and specifications 8

1.3. Methods and procedures 8

1.4. Work plan, Milestones and Gantt diagram 9

1.4.1. Workplan 9

1.4.2. Milestone 10

1.4.3. Gantt diagram 11

1.5. Deviations and Incidences 11

2. Malaria 12

2.1. Thick and thin blood smear 12

2.2. Diagnosis methods 13

3. State of the art in object detection 14

3.1. Image processing techniques 14

3.2. Deep learning detection models 14

3.2.1. Faster RCNN 14

3.2.2. RetinaNet 15

3.2.3. SSD: Single Shot MultiBox Detector 16

3.2.4. YOLO: You Only Look Once 16

3.3. Adaptive Attention Mechanisms 17

3.3.1. Channel Attention 17

3.3.2. Spatial Attention 18

3.3.3. SE: Squeeze and Excitation 19

3.3.4. CBAM: Convolutional Block Attention Module 20

4. Methodology / project development 21

4.1. Dataset and annotations 21

4.2. Adaptative attention Mechanism 23

4.2.1. SE - YOLO 23

4.2.2. CBAM - YOLO 24

4

4.3. Model Evaluation 25

5. Results 26

5.1. Faster RCNN, RetinaNet and SSD results 26

5.2. YOLO results 27

6. Budget 31

7. Conclusions and future development 32

Bibliography: 33

Appendices: 34

A. SE implementation 34

B. CBAM implementation 38

C. Faster RCNN, RetinaNet and SSD 40

Glossary 43

5

List of Figures

Figure 1 Work Plan .. 9

Figure 2 Gantt diagram ... 11

Figure 3 Examples of thick and thin blood smear [1] .. 12

Figure 4 Faster R-CNN [10] .. 14

Figure 5 Region Proposal Network (RPN) [10] .. 15

Figure 6 The one-stage RetinaNet network architecture [12] .. 15

Figure 7 SSD architecture [9] ... 16

Figure 8 YOLO architecture [8] .. 17

Figure 9 Channel Attention Module [15] .. 17

Figure 10 Spatial Attention Module [15] ... 18

Figure 11 Squeeze and Excitation block [14]... 19

Figure 12 SE-Inception and SE-ResNet module [14] ... 19

Figure 13 SE block integration designs [14] .. 20

Figure 14 CBAM module[15] ... 20

Figure 15 CBAM integrated with a ResBlock in ResNet [15] ... 20

Figure 16 JSON annotation example ... 21

Figure 17 txt annotation example ... 23

Figure 18 SE backbone architecture .. 24

Figure 19 CBAM architecture .. 24

Figure 20 YOLO - optimizer loss .. 27

Figure 21 Hyperparameter search .. 27

Figure 22 YOLO - Loss and metrics .. 28

Figure 23 YOLO - metrics numbers.. 28

Figure 24 Examples of detections ... 29

Figure 25 SE class... 34

Figure 26 SE channel code ... 34

Figure 27 SE backbone architecture code ... 35

Figure 28 SE backbone .. 36

Figure 29 Standard SE ... 36

Figure 30 SE pre ... 36

Figure 31 SE post ... 36

file:///C:/Users/mhar_/Downloads/Degree_thesis_Adriana_Renjifo.docx%23_Toc116909267
file:///C:/Users/mhar_/Downloads/Degree_thesis_Adriana_Renjifo.docx%23_Toc116909269
file:///C:/Users/mhar_/Downloads/Degree_thesis_Adriana_Renjifo.docx%23_Toc116909296
file:///C:/Users/mhar_/Downloads/Degree_thesis_Adriana_Renjifo.docx%23_Toc116909297

6

Figure 32 SE pre and post .. 37

Figure 33 SE other [16] .. 37

Figure 34 Channel Attention class ... 38

Figure 35 Spatial Attention class ... 38

Figure 36 CBAM class .. 38

Figure 37 CBAM with C3 block .. 39

Figure 38 CBAM channel code .. 39

Figure 39 CBAM architecture code ... 39

Figure 40 Faster RCNN – Loss and metrics .. 40

Figure 41 Retinanet - Loss and metrics ... 41

Figure 42 SSD - Loss and metrics ... 42

7

List of Tables:

Table 1 Work Packages.. 9

Table 2 Milestone .. 10

Table 3 Comparative table of malaria diagnostic techniques with its main advantages and

disadvantages. [1] ... 13

Table 4 Annotations - label ... 22

Table 5 Annotations - disease ... 22

Table 6 Hyperparameters from Josep Blazquez’s work .. 26

Table 7 Summary of metrics, Faster RCNN, Retina Net and SSD .. 26

Table 8 Comparison of metrics with the results of Josep Blazquez .. 26

Table 9 Test - Comparison of model metrics .. 28

Table 10 Compare validation - Attention modules ... 30

Table 11Compare test - Attention modules .. 30

Table 12 Project budget .. 31

Table 13 Faster RCNN - metric numbers ... 40

Table 14 Retina Net - metric numbers .. 41

Table 15 SSD - metric numbers ... 42

8

1. Introduction

1.1. Statement of purpose

The purpose of this project is to develop an end-to end deep network to detect malaria parasites

from thick smear blood sample images with object detectors with adaptive attention mechanisms

and see the performance.

1.2. Requirements and specifications

Project requirements:

● Deep learning neural networks:

○ Faster R-CNN

○ RetinaNet

○ SSD

○ YOLO

● Libraries python:

○ PyTorch

○ Torchvision

● Adaptive attention mechanisms:

○ Squeeze and Excitation

○ Convolutional Block Attention Model

● Database

○ Images and labels (json and txt format)

1.3. Methods and procedures

This project is part of a larger project in which the BIOCOMSC, DTIM and GPI research groups of

the UPC, in addition to the Probitas Foundation and the Vall d'Hebron Research Institute, whose

general objective is to development of an effective, affordable and quality system for the

automatic detection of malaria, in which they use the YOLO algorithm.

This project is also continuation of Josep Blazquez's thesis part of a series of works at University’s

Image Processing Group, of deep learning networks for malaria detection in thick smear blood

samples using SSD, RetinaNet and Faster R-CNN. The model with the best performance is Faster-

RCNN.

This project aims to integrate adaptive attention mechanisms to YOLO algorithm and Faster-RCNN.

The database is from Drassanes Center tropical diseases (part of the Vall d’Hebron Hospital)

The experiments were done in python scripts and Google Collab, were done on servers of the UPC,

CALCULA.

9

1.4. Work plan, Milestones and Gantt diagram

1.4.1. Workplan

It was decided to separate the work into 5 Work Packages. In the first one, it was necessary to

learn concepts about Deep Learning. The second package for the analysis of the previous work of

Josep Balzquez (SSD, RetinaNet & Faster R-CNN) and implementation of YOLO algorithm. The third

package for applying attention mechanisms to YOLO and Faster-RCNN. To finish, the fourth

package for writing the thesis with the development, results and conclusions. In Figure 1.2 can be

seen the Gantt followed.

Table 1 Work Packages

Project: Autonomous learning WP ref: WP1

Major constituent: Learning Sheet 1 of 4

Short description:

- Learn concepts about Deep Learning.

- Connecting to computing servers, CALCULA of the GPI with VPN.

- Research YOLO algorithm and adaptive attention mechanisms

Start – end date:

All semester

Internal task T1: Stanford Course CS231n Convolutional Neural Networks for
Visual Recognition, on Youtube.

Internal task T2: Labs of the Master course in Deep Learning for Artificial
Intelligence from the UPC.

Internal task T3: Connecting and configure the VM (virtual machine)

Internal task T4: Research YOLO algorithm

Internal task T5: Research adaptive attention mechanisms

Deliverables:

Do the labs and watch
the videos.

And access correctly to
the VM.

Project: Analysis and YOLO algorithm implementation WP ref: WP2

Major constituent: Software and programming Sheet 2 of 4

Short description: Start date: 22/02/2022

End date: 13/05/2022

Deep learning networks for malaria
detection

WP1:
Autonomous

learning

WP2: Analysis and
YOLO algorithm
implementation

WP3: Attention
mechanisms

implementation

WP4: Results
and reports

Figure 1 Work Plan

10

- Analysis of the previous work of Josep Balzquez (SSD, RetinaNet & Faster R-
CNN)

- Use the test dataset to see the performance and choose the better one for
work later.

- Implementation of the YOLO algorithm, train and test

Internal task T1: Prepare the database and load

Internal task T2: Understand the code

Internal task T3: Execute the scripts

Internal task T4: Analyze the hyperparameters

Internal task T5: Test the algorithm for select the best option

Internal task T6: Make modifications if necessary

Internal task T7: Prepare YOLO algorithm

Internal task T8: Train and test YOLO

Deliverables:

The hyperparameters.

Find the best model.

Python scripts.

Project: Adaptive attention mechanisms implementation WP ref: WP3

Major constituent: Software and programming Sheet 3 of 4

Short description:

Implement the adaptive attention mechanisms (AAM) in the model with highest
performance (found previously) and also with the YOLO.

Start date: 13/05/2022

End date: 15/06/2022

Start date: 12/09/2022

End date: 9/10/2022

Internal task T1: Prepare AAM algorithms

Internal task T2: Train and test AAM

Deliverables:

Pytorch scripts

Project: Results and reports WP ref: WP4

Major constituent: Analysis and write the documentation Sheet 4 of 4

Short description:

Write the Critical review and the Final Report document.

Start date T1: 9/04/2022

End date T1:14/04/2022

Start date T2:25/05/2022

End dateT2: 12/10/2022

Internal task T1: Critical review document

Internal task T2: Final Report document

Deliverables:

Reports

1.4.2. Milestone

WP# Short title Milestone / deliverable Date (week)

1 Autonomous learning Research All semester

2 Analysis and YOLO algorithm Model 09/05/2022

3 Adaptive attention mechanisms Models with AAM 03/10/2022

4 Results and reports Documents 12/10/2022

Table 2 Milestone

11

1.4.3. Gantt diagram

Figure 2 Gantt diagram

1.5. Deviations and Incidences

- The implementation of adaptive attention mechanisms in Faster-R CNN and YOLO requires

a modification in the architecture, in the case of Faster-RCNN it is more complicated so I

could not be completed.

- For reasons unrelated to the project, it has not been addressed the Bluetooth

communication between the computer and the mobile, to transmit malaria images taken

from the mobile through the microscope.

18-Feb 18-Mar 15-Apr 13-May 10-Jun

WP 1 Autonomous learning

WP 2 Analysis and YOLO algorithm
implementation

WP 3 Adaptive attention mechanisms
implementation

WP 5.1 Critical review document

WP 5.2 Final Report document

12-Sep 10-Oct

12

2. Malaria

Malaria is one of the most common infectious diseases worldwide. It is caused by parasites of the

genus Plasmodium, which is transmitted to humans by a bite of an infected female mosquito of

the species Anopheles [3].

Malaria is a severe disease caused by parasites of the genus Plasmodium, which is transmitted to

humans by a bite of an infected female mosquito of the species Anopheles. The World Health

Organization carries out a malaria control program on a global scale, focusing on local

strengthening of primary health care, early diagnosis of the disease, timely treatment, and disease

prevention. Globally, the burden of malaria is lower than ten years ago [4].

Globally, there were an estimated 241 million malaria cases in 2020 in 85 malaria endemic

countries (including the territory of French Guiana), increasing from 227 million in 2019 [4].

Malaria-related mortality has a very high association with poverty rates, and the disease is most

prevalent in low and middle-income countries. [5].

The COVID-19 pandemic has resulted in unprecedented challenges to health systems worldwide,

including the control of non-COVID-19 diseases. Malaria cases and deaths may increase due to the

direct and indirect effects of the pandemic in malaria-endemic countries, particularly in sub-

Saharan Africa [6].

2.1. Thick and thin blood smear

● A thick blood smear is a drop of blood on a glass slide. Thick blood smears are most useful

for detecting the presence of parasites, because they examine a larger sample of blood.

(Often there are few parasites in the blood at the time the test is done.) [2]

● A thin blood smear is a drop of blood that is spread across a large area of the slide. Thin

blood smears help doctors discover what species of malaria is causing the infection.[2]

(A)Thick blood smear (B) Thin blood smear

White Blood Cell nuclei (WBC), Red Blood Cell (RBC) and Trophozoites (T)

Microscopic visualization of thin blood smears permits to distinguish the species of Plasmodium,

due to the morphology of erythrocytes and the distinctive features depending on the type of

Figure 3 Examples of thick and thin blood smear [1]

13

specimen infection. Thick blood smears are more efficient and have more sensitivity than thin

blood smears [7].

2.2. Diagnosis methods

Several techniques are available and used to detect directly or indirectly the presence of malaria

parasites in blood.

● Microscopic examination

● Quantitative Buffy Coat (QBC)

● Rapid Diagnostic Tests (RDTs)

● Polymerase Chain Reaction (PCR)

● LAMP

This thesis focuses on microscopic examination, this way we have a database of images of thick

blood smear samples for deep learning models.

Comparative table of malaria diagnostic techniques with its main advantages and disadvantages.

QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnostic Tests, PCR: Polymerase Chain Reaction,

LAMP: Loop-Mediated Isothermal Amplification. [1]

Diagnostic

technique
Advantages Disadvantages

Microscopic

examination

Availability, low cost, parasite level

calculations, specie identification.

Expert personal requirement, difficult to

reproduce.

Quantitative Buffy

Coat (QBC)

Fast preparation, high sensitivity. Expert personal requirement,

fluorescence microscopy, specific

instrumentation.

Rapid Diagnostic

Tests (RDTs)

Fast preparation, easy handling, low

cost, specie identification.

False-negative and false-positive results.

Mainly, low parasite density, HRP2/3 gene

deletions, prozone effect, low sensitivity

with P.ovale and P.malariae infections.

PCR High sensitivity and specificity, specie

identification.

Specific instrumentation, difficult to

implement in endemic areas and

expensive.

LAMP High sensitivity and specificity, specie

identification, does not need

thermocyclers.

Specific instrumentation and expensive.

Table 3 Comparative table of malaria diagnostic techniques with its main advantages and

disadvantages. [1]

14

3. State of the art in object detection

3.1. Image processing techniques

Optical microscopy examination of blood smears is the “gold standard” technique for malaria

diagnosis, although is a time-consuming method, depends on the experience of the microscopist

and results are difficult to reproduce. New techniques based on digital imaging analysis by deep

learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of

infectious diseases. Systems based on Convolutional Neural Networks for image malaria parasite

detection emulate the microscopy visualization of an expert. Automation provides a faster and

low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic

diagnosis, which permits image capture and software identification of parasites. In addition, image

analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis,

or Neglected Tropical Diseases in endemic areas with low resources. The implementation of

automated diagnosis by using mobile phone applications and new digital imaging technologies in

low-income areas is a challenge to achieve. Moreover, automating the movement and focusing of

the samples in the microscope by hardware implementation would systemize the procedure.

These new diagnosis tools will join the global effort to fight against the malaria pandemic.[1] State

of the art of the technology used or applied in this thesis

3.2. Deep learning detection models

3.2.1. Faster RCNN

Faster R-CNN is a deep con deep convolutional network used for object detection, based two-stage

detection. Faster R-CNN improves Fast R-CNN by utilising a region proposal network (RPN) with

the CNN model. It is a fully convolutional network that simultaneously predicts object bounds and

objectness scores at each position.[10]

Faster RCNN has two networks. The first is the RPN for generating region proposals and the second

network for using these proposals to detect objects. The time cost of generating region proposals

is much smaller in RPN than selective search, when RPN shares the most computation with the

object detection network. The architecture is as follows.[17]

Figure 4 Faster R-CNN [10]

15

The anchor boxes play an important role in Faster R-CNN. It is a reference box of a specific scale

and aspect ratio. By the default there are 9 anchors (3 scales x 3 aspect ratios) at a position of an

image. Some of the anchor variations are shown in the next figure.[17]

Figure 5 Region Proposal Network (RPN) [10]

3.2.2. RetinaNet

The highest accuracy object detectors to date are based on a two-stage approach popularized by

R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-

stage detectors that are applied over a regular, dense sampling of possible object locations have

the potential to be faster and simpler but have trailed the accuracy of two-stage detectors thus

far. The researchers discovered that the extreme foreground-background class imbalance

encountered during training of dense detectors is the central cause. Loss focuses training on a

sparse set of hard examples and prevents the vast number of easy negatives from overwhelming

the detector during training. To evaluate the effective-ness of the loss, they design and train a

simple density detector, RetinaNet.[12]

RetinaNet is a one-stage object detection model, unified network composed of a backbone

network and two task-specific subnetworks. The backbone is responsible for computing a

convolutional feature map over an entire input image and is an off-the-self convolutional network.

The first subnet performs convolutional object classification on the backbone’s output; the

second subnet performs convolutional bounding box regression [12].

Figure 6 The one-stage RetinaNet network architecture [12]

The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) backbone

on top of a feedforward ResNet architecture (a) to generate a rich, multi-scale convolutional

feature pyramid (b). To this backbone RetinaNet attaches two subnetworks, one for classifying

anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The

16

network design is intentionally simple, which enables this work to focus on a novel focal loss

function that eliminates the accuracy gap between our one-stage detector and state-of-the-art

two-stage detectors like Faster R-CNN with FPN while running at faster speeds. [12]

3.2.3. SSD: Single Shot MultiBox Detector

The SSD is a single-stage detection. SSD discretizes the output space of bounding boxes into a set

of default boxes over different aspect ratios and scales per feature map location. At prediction

time, the network generates scores for the presence of each object category in each default box

and produces adjustments to the box to better match the object shape. Additionally, the network

combines predictions from multiple feature maps with different resolutions to naturally handle

objects of various sizes.2 [9]

Figure 7 SSD architecture [9]

The early network layers are based on a standard architecture used for high quality image

classification (truncated before any classification layers), called the base network. Then it is the

auxiliary structure to the network to produce detections with the following key features [9]:

- Multi-scale feature maps for detection.

Convolutional feature layers to the end of the truncated base network (backbone model).

These layers decrease in size progressively and allow predictions of detections at multiple

scales.

- Convolutional predictors for detection.

Each added feature layer (or optionally an existing feature layer from the base network) can

produce a fixed set of detection predictions using a set of convolutional filters. These are

indicated on top of the SSD network architecture in Fig. 7. The bounding box offset output

values are measured relative to a default box position relative to each feature map location

- Default boxes and aspect ratios.

The default boundary boxes are equivalent to anchors in Faster R-CNN. The default bounding

boxes are associated with every feature map cell at the top of the network. These default

boxes tile the feature map in a convolutional manner such that the position of each box

relative to its corresponding cell is fixed.

3.2.4. YOLO: You Only Look Once

YOLO is a single shot detector, which means that it only looks at the image once to make the

prediction in the bounding boxes. YOLO frame object detection as a regression problem to spatially

separated bounding boxes and associated class probabilities. A single neural network predicts

17

bounding boxes and class probabilities directly from full images in one evaluation. Since the whole

detection pipeline is a single network, it can be optimized end-to-end directly on detection

performance.[8]

Figure 8 YOLO architecture [8]

The initial convolutional layers of the network extract features from the image while the fully

connected layers predict the output probabilities and coordinates.

YOLO imposes strong spatial constraints on bounding box predictions since each grid cell only

predicts two boxes and can only have one class. Since the model learns to predict bounding boxes

from data, it struggles to generalize to objects in new or unusual aspect ratios or

configurations. The model also uses relatively coarse features for predicting bounding boxes since

our architecture has multiple downsampling layers from the input image. A small error in a large

box is generally benign but a small error in a small box has a much greater effect on IOU.[8]

3.3. Adaptive Attention Mechanisms

The attention mechanism is inspired by the human vision, which tends to selectively focus on parts

of information and ignore others. In deep learning, attention mechanisms have been widely used

in conjunction with the existing neural network models to assign different weights to the different

parts of the model by which more critical feature representations (what and/or where) can be

obtained to optimize the model.

3.3.1. Channel Attention

The channel attention focuses on “what” is meaningful given an input image and it is usually in the

higher layers since there is abundant semantic information but less positional information. With

object of different sizes, may have a negative impact on other objects. To compute the channel

attention efficiently, the spatial dimension of the input feature map is squeezed. [15]

Figure 9 Channel Attention Module [15]

Channel attention performs feature recalibration with respect to the channel dimension and

utilizes both max-pooling outputs and average-pooling outputs with a shared network. With the

average-pooling we can identify discriminative regions of an object and with the max-pooling it

18

can be more beneficial for small object. The squeeze-and-excitation module uses average-pooling

[14] and convolutional-block-attention-module uses both [15].

We first aggregate spatial information by using both average-pooling and max-pooling operations,

generating two different spatial context descriptors: 𝑭𝑎𝑣𝑔
𝑪 and 𝑭𝑚𝑎𝑥

𝑪 . Both descriptors are then

forwarded to a shared network to produce our channel attention map 𝑀𝐶 ∈ ℝ𝐶×1×1.The shared

network is composed of multi-layer perceptron (MLP) with one hidden layer. To reduce parameter

overhead, the hidden activation size is set to ℝ𝐶/𝑟×1×1, where r is the reduction ratio. After the

shared network is applied to each descriptor, we merge the output feature vectors using element-

wise summation.[15]

The channel attention is computed as:

𝑀𝑐(𝑭) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭)))

(1)

= 𝜎 (𝑾𝟏 (𝑾𝒐(𝑭𝑎𝑣𝑔
𝑪)) + 𝑾𝟏 (𝑾𝒐(𝑭𝑚𝑎𝑥

𝑪)))

where 𝜎 denotes the sigmoid function, 𝑾𝒐 ∈ ℝ𝐶/𝑟×𝐶, and 𝑾𝟏 ∈ ℝ𝐶×𝐶/𝑟.

3.3.2. Spatial Attention

The spatial attention focuses on “where” as an informative part. Lower layers of a network contain

abundant positional information but less semantic information, we only apply spatial attention to

several lower layers of a detection network, is complementary to channel attention. [15]

Figure 10 Spatial Attention Module [15]

We first apply average-pooling and max-pooling operations along the channel axis and

concatenate them to generate an efficient feature descriptor. Applying pooling operations along

the channel axis is shown to be effective in highlighting informative regions. On the concatenated

feature descriptor, we apply a convolution layer to generate a spatial attention map 𝑀𝑆(𝐅) ∈

ℝ𝐻×W. which encodes where to emphasize or suppress. We describe the detailed operation below.

We aggregate channel information of a feature map by using two pooling operations, generating

two 2D maps: 𝑭𝑎𝑣𝑔
𝑺 ∈ ℝ1×𝐻×W and 𝑭𝑚𝑎𝑥

𝑺 ∈ ℝ1×𝐻×W [15].

The spatial attention is computed as:

𝑀𝑆(𝑭) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑭); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭)])) = 𝜎 (𝑓7×7 ([𝑭𝑎𝑣𝑔
𝑺 ; 𝑭𝑚𝑎𝑥

𝑺]))

(2)

where 𝜎 denotes the sigmoid function and 𝑓7×7 represents a convolution operation with the filter

size of 7 × 7.

19

3.3.3. SE: Squeeze and Excitation

Squeeze-and-Excitation Networks introduce a building block for CNNs that improves channel

interdependencies at almost no computational cost. It can be easily added to existing

architectures. SE add parameters to each channel of a convolutional block so that the network can

adaptively adjust the weighting of each feature map.[18]

SE module allows the network to perform feature recalibration whereby the network learns to use

global information to selectively emphasize informative features and suppress less useful ones

[14]. The block is connected after the final convolutional layer, to the block before the residue is

added to the jump connection. The intuition behind this is to keep the jump connection branch as

clean as possible to facilitate identity learning.

Figure 11 Squeeze and Excitation block [14]

First, a feature transformation (such as a convolution operation) is performed on the input

image X to get features U. Next, we perform a squeeze operation to get a single value for each

channel of output U. After, we perform an excitation operation on the output of

the squeeze operation to get per-channel weights.

Finally, once we have the per-channel weights, the final output of the block is obtained by rescaling

the feature map U with these activations. [19]

The role this operation performs at different depths differs throughout the network. In earlier

layers, it excites informative features in a class-agnostic manner, strengthening the shared low-

level representations. In later layers, the SE blocks become increasingly specialised, and respond

to different inputs in a highly class-specific manner. As a consequence, the benefits of the feature

recalibration performed by SE blocks can be accumulated through the network. [14]

Figure 12 SE-Inception and SE-ResNet module [14]

20

To integrate SE blocks with existing state-of-art architectures (Fig. 13). The performance

improvements produced by SE units are fairly robust to their location, provided that they are

applied prior to branch aggregation. [14]

Figure 13 SE block integration designs [14]

In Fig. 13 We can see different integration strategies for the SE block. The standard SE block is

applied right after the final convolutional layer of the architecture, in this case of a Residual

Network, right before the merging of the skip connection. The SE-PRE configuration was

constructed by placing the SE block at the start of the block, before the first convolutional layer,

while SE-POST did the opposite by placing it at the end of the block (after the merging of the skip

connection). Finally, the SE-Identity block applied the SE-module in the skip connection branch

itself, parallel to the main block, and is added to the final output as a normal residual.

3.3.4. CBAM: Convolutional Block Attention Module

The CBAM has two sequential sub-modules: Channel Attention and Spatial Attention. The

intermediate feature map is adaptively refined through the CBAM module at every convolutional

block of deep networks. [15]

Figure 14 CBAM module [15]

CBAM takes in a tensor containing the feature maps from the previous convolutional layer and first

refines it by applying channel attention. Subsequently this refined tensor is passed to spatial

attention, thus resulting in the output refined feature maps.

Two modules can be placed in a parallel or sequential manner. It is found that the sequential

arrangement gives a better result than a parallel arrangement. For the arrangement of the

sequential process, experimental result shows that the channel-first order is slightly better than

the spatial-first. In Fig. 15 shows the exact position of our module when integrated within a

ResBlock. We apply CBAM on the convolution outputs in each block.[15]

Figure 15 CBAM integrated with a ResBlock in ResNet [15]

21

4. Methodology / project development

4.1. Dataset and annotations

The database is composed of a total of 2570 images with their respective labels in JSON format

and was provided by the Institute of Research of Vall d’Hebron-Drassanes.

It is necessary to split randomly the database one time into three:

- 80% for training dataset, 2057 images.

- 15% for validation dataset, 384 images.

- 5% for testing dataset, 129 images.

It is verified that all the images have the file of the labels, in this project 3 images were found

without labels that are not considered for the rest of the rpoject.

The JSON format is like the Fig. 16.

Figure 16 JSON annotation example

The JSON file contains different information, such as the name, the quality of the microscope,

annotations, among others.

We use the 'uuid' that matches the image name to match it with its respective JSON file. In the

‘annotations’ section, we have the list of the annotations, each with their bounding box

coordinates, the disease, and the label.

22

Table 4 shows the annotations of the labels in all three datasets and in total. The ‘Leukocyte’,

‘Uncertain’ and ‘Artifact’ label have ‘Unclear/Undefined’ as disease, instead the ‘Parasite’ has 6

types of malaria as disease.

Annotation - label Training Validation Test Total
Leukocyte 7532 1376 464 9372
Parasite 16415 2717 863 19995
Uncertain 3472 549 207 4228
Artifact 2202 355 125 2682

TOTAL 29621 4997 1659 36277

Table 4 Annotations - label

The Table 5 shows the annotations of each disease in all three datasets, and in total.

Annotation - disease Training Validation Test Total
Malaria small trophozoite plasmodium spp

15168 2506 773 18447
Malaria mature trophozoite plasmodium spp

780 137 52 969
Malaria schizont plasmodium spp

289 40 24 353
Malaria trophozoite plasmodium spp

37 6 3 46
Malaria gametocyte plasmodium falciparum

113 22 7 142
Malaria gametocyte plasmodium spp

28 6 4 38
Unclear/Undefined.

13206 2280 796 16282
Total malaria

16415 2717 863 19995
TOTAL

29621 4997 1659 36277

Table 5 Annotations - disease

There are not enough annotations of all types of diseases. Therefore, it has been decided to

summarize the labels and disease in 4 classes:

0. Background

1. Leukocyte

2. Malaria trophozoite

3. Malaria mature trophozoite

In the background goes ‘Uncertain’ and ‘Artifact’ labels because there are irrelevant for the

training. The Leukocytes are all white blood cells annotations. Malaria trophozoite and Malaria

mature trophozoite because there are the most relevant parasites.

This project also needs the labels in txt format for the YOLO model, in the following format:
Class X_center Y_center width_yolo height_yolo

Where:

𝑋𝑐𝑒𝑛𝑡𝑒𝑟 =
posX +

width
2

imgwidth
 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 =

posY +
height

2
imgheight

(3)

23

widthyolo =
width

imgwidth
 heightyolo =

height

imgheight

(4)

imgheight , imgwidth, imgchannels = 𝑖𝑚𝑎𝑔𝑒. 𝑠ℎ𝑎𝑝𝑒

(5)

An example of the labels in txt format:

Figure 17 txt annotation example

For the YOLO implementation, we consider the following classes:

0. Leukocyte

1. Malaria trophozoite

2. Malaria mature trophozoite

4.2. Adaptative attention Mechanism

To add the SE and CBAM modules to YOLO, we must modify the architecture and add the code to

make it work since it is not integrated in YOLOv5. We must modify three files: common.py, yolo.py

and the yaml file of the architecture and each one should have a different yaml file of the

architecture.

4.2.1. SE - YOLO

In this project we follow some the integration proposals of Squeeze-and-Excitation, Fig 13, like the

standard SE block, SE pre block, SE post block, and a combination of the pre and post block. And

two others according to some examples and papers [16]. In total, 6 different architectures were

made:

1. Standard SE: SE after the residual and before the concatenation.

2. SE pre block: SE before the residual.

3. SE post block: SE after the concatenation.

4. SE pre and post block: Combination between pre and post block

5. SE other: according to paper [16] about an Attention Mechanism for Small Object

Detection on Satellite Images.

6. SE backbone: SE at the end of the backbone.

In Fig 18 we can see the example of the architecture that must be followed for the SE backbone,

all the architecture diagrams are in the Appendices A, as well the code implementation.

24

Figure 18 SE backbone architecture

4.2.2. CBAM - YOLO

The details of the implementations of the code files are in the Appendices B.

CBAM module needs to go after the convolutions, C3 block, to facilitate the architecture and avoid

channels errors, a C3_CBAM block is created, this block will only be in the backbone, see Fig 19.

Figure 19 CBAM architecture

25

4.3. Model Evaluation

F_score and mean Average Precision (mAP) are adopted as the evaluation criteria. F_score finds

the most optimal confidence score threshold where precision and recall give the highest F1 score.

The F1 score calculates the balance between precision and recall. If the F1 score is high, precision

and recall are high, and vice versa. The precision P (Equation (6)) and the recall R (Equation (7)) are

defined as:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(6)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(7)

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃 × 𝑅

𝑃 + 𝑅

(8)

where 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are the numbers of true positive cases, false positive cases and false

negative cases, respectively. A detection map will be considered to be a TP when the IoU exceeds

the given threshold (e.g., 0.5). The IoU is the overlap ratio between the predicted box and the

ground truth, defined as:

𝐼𝑜𝑈 =
area(A) ∩ area(B)

area(A) ∪ area(B)

(9)

where 𝐴 and 𝐵 are the ground truth and the predicted box.

26

5. Results

5.1. Faster RCNN, RetinaNet and SSD results

For development of the models, is necessary use a pre-trained backbone on the COCO dataset,

other wise a large database would be needed.

This project uses the hyperparameters of Josep Blazquez's thesis:

Model Optim. Lr Momen. Weight decay
Faster RCNN SDG 1,0E-03 0,900 5,00E-04

Retina Net SDG 1,0E-03 0,900 5,00E-03

SSD SDG 1,0E-04 0,900 5,00E-04

Table 6 Hyperparameters from Josep Blazquez’s work

In Appendices C are the graphs of the losses and metrics of each model.

This project has 218 more images in the database than Josep Blazquez's project, but we still come

to the same conclusions. Faster RCNN works better than the SSD and RetinaNet. And we reach this

result with an epoch of 120 for faster RCNN and SSD, instead for RetinaNet we need an epoch of

60, RetinaNet achieve very fast compared to the other models.

In the following table show the summary of the metrics, for validation and testing.

Validation

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Faster RCNN 0.8753 0.9331 0.9033 0.9194 0.6152

RetinaNet 0.9369 0.8155 0.8720 0.9180 0.6101

SSD 0.9501 0.4789 0.6368 0.8491 0.5351

Test

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Faster RCNN 0.8913 0.9638 0.9261 0.9412 0.6390

RetinaNet 0.9407 0.8719 0.9050 0.9489 0.6513

SSD 0.9562 0.5599 0.7063 0.9133 0.5842

Table 7 Summary of metrics, Faster RCNN, Retina Net and SSD

If we compare with Josep's work, we will see that the metrics improves, since we have more

images, and we have to take into account that the distribution of the images is not exactly the

same, for example, an image that he had for training dataset I could have it in the test dataset, that

also influences the result of the metrics. The comparation is in the following table:

Test

Model
Josep

F-score
F-score

Josep

mAP@.50
mAP@.50

Josep

mAP@.50:.95
mAP@.50:.95

Faster RCNN 0.9120 0.9261 0.9320 0.9412 0.6290 0.6390

RetinaNet 0.9030 0.9050 0.9370 0.9489 0.6480 0.6513

SSD 0.7150 0.7063 0.8810 0.9133 0.5690 0.5842

Table 8 Comparison of metrics with the results of Josep Blazquez

27

5.2. YOLO results

For development of the model, is necessary use a pre-trained weight, yolo5x.pt. since we do not

have a large dataset.

We have three options for the optimizer, SDG, adamW and adam, in the image below we can see

that works much better with SDG optimizer.

Figure 20 YOLO - optimizer loss

For the hyperparameters, YOLO has by default (hyp.scratch-low) :

- 𝑙𝑟0 = 0.01 the initial learning rate

- 𝑙𝑟𝑓 = 0.01 the final OneCycleLR learning rate (𝑙𝑟0 ∗ 𝑙𝑟𝑓)

- 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.937

- 𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 5𝑒 − 4, among others.

But there is another type of configuration, integrate in YOLO , hyp.scratch-med, that we can use

l𝑟𝑓 = 0.1. In the Fig 21, we can see that we have a better performance with the l𝑟𝑓 = 0.1 of the

hyp.scratch-med.yaml file.

Figure 21 Hyperparameter search

28

We train the model until 30 epochs with a batch of 8 images, with the hyperparameters from YOLO.

Figure 22 YOLO - Loss and metrics

YOLO provides two models: the latest model and the best model. In this experiment the best model

is found in the epoch 25. The values of the metrics for each model:

Validation
Epoch Dataset Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Best -25 Validation 0.8975 0.9198 0.9085 0.9490 0.6513

Last-30 Validation 0.8978 0.9192 0.9084 0.9490 0.6516

Test

Epoch Dataset Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Best -25 Test 0.9210 0.9350 0.9279 0.9440 0.6910

Last-30 Test 0.9370 0.9020 0.9192 0.9320 0.6820

Figure 23 YOLO - metrics numbers

We can see that most of the higher values of F-score are in the best model, now we can compare

it with the other models in the next table:

Validation

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Faster RCNN 0.8753 0.9331 0.9033 0.9194 0.6152

RetinaNet 0.9369 0.8155 0.8720 0.9180 0.6101

SSD 0.9501 0.4789 0.6368 0.8491 0.5351

YOLO 0.8975 0.9198 0.9085 0.9490 0.6513

Test

Model Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Faster RCNN 0.8913 0.9638 0.9261 0.9412 0.6390

RetinaNet 0.9407 0.8719 0.9050 0.9489 0.6513

SSD 0.9562 0.5599 0.7063 0.9133 0.5842

YOLO 0.9210 0.9350 0.9279 0.9440 0.6910

Table 9 Test - Comparison of model metrics

YOLO is the one who has the best performance with the highest F-score of 0,9279.

29

Figure 24 Examples of detections

5.3. Attention Module results

By adding the SE and CBAM, the architecture is changed, therefore it needs more training than in

the case of the normal YOLO. For this reason, training experiments are carried out up to 60 epochs,

and we use the test database for detection in the 2 models that YOLO gives us, the best model,

and the last model.

In total there are 7 experiments, 6 are from SE and 1 from CBAM. Putting them all together in a

graph would be complicated, that is why the table is very detailed.

- 1st column: The experiment name.

- 2nd column: If it is the validation or testing database.

- 3rd column: YOLO gives us a ‘best’ and a ‘last’ file, so we do tests with each of them.

- 4th column: The number of the epoch.

- And the other columns the metrics.

In the tables [10] [11], those values that are marked with green, is because those values are equal

or greater than the metric of the YOLO in the epoch 25, the one in the table in red colour.

Those marked in yellow only have a difference of 0.005 with the value we are comparing, this way

we know that it is a value that is very close.

And both tables are sorted by F-score values, from higher to lower.

In the table [10] of validation, we see that the models with best performance are:

- SE other with F-score of 0,9157 for the best epoch 59, and 0,9155 for the last epoch.

- SE backbone with F-score of 0,9121 for the best epoch 58, and 0,9120 for the last epoch

- CBAM with F-score of 0,9112 for the best epoch 55, and last epoch.

- SE standard with F-score of 0,9101 for the last epoch and 0,9098 for the best epoch 59.

In the case of the test evaluation, in table [11], do not happen the same thing, the best

performance is the basic YOLO architecture, but the most near to this is the CBAM architecture

with F-score of 0, 9259 in the best epoch 55.

30

Validation

Model Epoch Precision Recall F-score mAP@.50 mAP@.50:.95

SE other
best 59 0,9118 0,9196 0,9157 0,9481 0,6490

last 60 0,9139 0,9171 0,9155 0,9479 0,6486

SE backbone
best 58 0,9018 0,9226 0,9121 0,9431 0,6428

last 60 0,9015 0,9227 0,9120 0,9414 0,6421

CBAM
last 60 0,8858 0,9380 0,9112 0,9463 0,6555

best 55 0,8857 0,9382 0,9112 0,9460 0,6552

SE standard
last 60 0,9094 0,9108 0,9101 0,9432 0,6506

best 59 0,9101 0,9096 0,9098 0,9432 0,6502

YOLO best 25 0,8975 0,9198 0,9085 0,9490 0,6513

SE post
last 60 0,9066 0,9100 0,9083 0,9497 0,6467

best 49 0,9064 0,9101 0,9083 0,9497 0,6468

SE pre
best 59 0,9338 0,8839 0,9082 0,9494 0,6422

last 60 0,9326 0,8848 0,9081 0,9494 0,6424

SE pre and
post

last 60 0,8896 0,9204 0,9047 0,9468 0,6426

best 58 0,8898 0,9201 0,9047 0,9466 0,6427

Table 10 Compare validation - Attention modules

Test

Model Epoch Precision Recall F-score mAP@.50 mAP@.50:.95

YOLO best 25 0,9210 0,9350 0,9279 0,9440 0,6910

CBAM best 55 0,9350 0,9170 0,9259 0,9420 0,6940

SE other
best 59 0,9040 0,9380 0,9207 0,9450 0,6960

last 60 0,9040 0,9380 0,9207 0,9450 0,6960

SE pre and post last 60 0,9390 0,9020 0,9201 0,9350 0,6810

CBAM last 60 0,9060 0,9320 0,9188 0,9480 0,7010

SE standard
best 59 0,9160 0,9160 0,9160 0,9370 0,6870

last 60 0,9160 0,9160 0,9160 0,9370 0,6870

SE backbone
best 58 0,9200 0,9060 0,9129 0,9390 0,6870

last 60 0,9070 0,9130 0,9100 0,9380 0,6750

SE post
best 49 0,8930 0,9250 0,9087 0,9330 0,6800

last 60 0,9130 0,8970 0,9049 0,9280 0,6790

SE pre and post best 58 0,8950 0,9130 0,9039 0,9280 0,6740

SE pre
best 59 0,8920 0,8930 0,8925 0,9230 0,6670

last 60 0,8920 0,8930 0,8925 0,9230 0,6670

Table 11Compare test - Attention modules

31

6. Budget

Consider the following for the budget:

- All the software used for this project, like Visual Studio Code, are open Source.

- The project has taken 460 hours, and a salary as a junior engineering of 9€/h.

- Medium-high range laptop to be able to work comfortably and quickly. The approximate

cost of a laptop with these characteristics is 1000 €.

- The project requires many hours of training for the models and testing; therefore, we

consider a virtual machine with a 16 GB GPU for 4 months, 45€/month.

- The dataset is a resource created by the Institute of Research of Vall dHebron-Drassanes

and It is not included.

The total cost can be summarized as follows:

Item Total

Software 0 €

Junior engineer 4320 €

Laptop 1000 €

VM GPU 16GB 185 €

Total Project Cost Estimate 5325 €

Table 12 Project budget

The total cost estimate is 5325€.

32

7. Conclusions and future development

After carrying the experiments and obtaining the results of the different models and

architectures, we can say that the Convolutional Block Attention Module in the backbone of

the YOLO architecture provides the best performance, reaching an F-score of 0,9257 and mAP

0.5 of 0,9420.

Some approaches of future work would be:

- Combine different attention modules, like the SE with CBAM for a better performance.

- Add transformers into the architecture.

- Increase the database with open-source dataset.

33

Bibliography:

[1] Advances and challenges in automated malaria diagnosis using digital 1 microscopy imaging with artificial
intelligence tools – Carles Rubio Maturana, Allisson Dantas de Oliveira, Sergi Nadal Francesch, Besim Bilalli,
Francesc Zarzuela Serrat, Mateu Espasa Soley, Elena Sulleiro Igual, Mercedes Bosch, Anna Veiga Lluch, Alberto
Abelló, Daniel López-Codina, Tomàs Pumarola Suñé, Elisa Sayrol Clols, Joan Joseph Munné.

[2] HealthLink BC, thick and thin blood smear malaria. [Link]

[3] Jasminka Talapko, Ivana Škrlec, Tamara Alebi´c, Melita Juki´c and Aleksandar Vˇcev. Malaria: The Past and the
Present. [Link]

[4] World Health Organization WHO. World malaria report 2021. [Link]

[5] Minghui Ren. Greater political commitment needed to eliminate malaria [Link]

[6] Anna‑Katharina Heuschen, Guangyu Lu, Oliver Razum, Alhassan Abdul‑Mumin4 Osman Sankoh, Lorenz von
Seidlein, Umberto D’Alessandro and Olaf Müller. Public health-relevant consequences of the COVID-19
pandemic on malaria in sub-Saharan Africa: a scoping review [Link]

[7] Wangai, L. N. et al. (2011) ‘Sensitivity of microscopy compared to molecular diagnosis of P. 860 Falciparum:
Implications on malaria treatment in epidemic areas in Kenya’, African Journal of 861 Infectious Diseases, 5(1),
pp. 1–6. doi: 10.4314/ajid.v5i1.66504.

[8] Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi. You Only Look Once: Unified, Real-Time Object
Detection. 2016. arXiv:1506.02640v5 [Link]

[9] Wei Liu, Dragomir Anguelov2, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. 2016. arXiv:1512.02325v5 [Link]

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. 2016. [Link]

[11] Ross Girshick. Fast R-CNN. 2015. arXiv:1504.08083v2 [Link]

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar. Focal Loss for Dense Object Detection. 2018.
arXiv:1708.02002v2

[13] Wei Li, Kai Liu, Lizhe Zhang and Fei Cheng. object detection based on an adaptive attention mechanism. 2020
[Link]

[14] Jie Hu, Li Shen, Samuel Albanie, Gang Sun and Enhua Wu. Squeeze and Excitation Networks. 2019. [Link]

[15] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: Convolutional Block Attention
Module. 2018. arXiv:1807.06521v2 [Link]

[16] Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al.
Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images.
Remote Sens. 2022, 14, 2861. https:// doi.org/10.3390/rs14122861

[17] Faster RCNN Explained. https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8

[18] Squeeze-and-Excitation Networks. https://towardsdatascience.com/squeeze-and-excitation-networks-

9ef5e71eacd7

[19] Squeeze and Excitation Networks Explained with PyTorch Implementation.

https://amaarora.github.io/2020/07/24/SeNet.html

[20] yolov5 added CBAM, SE, CA, ECA attention mechanism, pure code.

https://www.codetd.com/en/article/13710152

[21] Attention Mechanisms in Computer Vision: CBAM. https://blog.paperspace.com/attention-mechanisms-in-

computer-vision-cbam/

[22] Channel Attention and Squeeze-and-Excitation Networks (SENet). https://blog.paperspace.com/channel-

attention-squeeze-and-excitation-networks/

[23] Attention Mechanisms in Computer Vision: CBAM. https://blog.paperspace.com/attention-mechanisms-in-

computer-vision-cbam/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617065/pdf/microorganisms-07-00179.pdf
https://www.mmv.org/sites/default/files/uploads/docs/publications/World_Malaria_Report_2021.pdf
https://idpjournal.biomedcentral.com/track/pdf/10.1186/s40249-019-0542-8.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1506.01497.pdf
file:///C:/Users/mhar_/Downloads/%5bLink%5dhttps:/arxiv.or
https://www.nature.com/articles/s41598-020-67529-x
https://arxiv.org/pdf/1709.01507.pdf
https://arxiv.org/pdf/1807.06521.pdf
https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8
https://towardsdatascience.com/squeeze-and-excitation-networks-9ef5e71eacd7
https://towardsdatascience.com/squeeze-and-excitation-networks-9ef5e71eacd7
https://amaarora.github.io/2020/07/24/SeNet.html
https://www.codetd.com/en/article/13710152
https://blog.paperspace.com/attention-mechanisms-in-computer-vision-cbam/
https://blog.paperspace.com/attention-mechanisms-in-computer-vision-cbam/
https://blog.paperspace.com/channel-attention-squeeze-and-excitation-networks/
https://blog.paperspace.com/channel-attention-squeeze-and-excitation-networks/

34

Appendices:

A. SE implementation

- Let’s start with the modification of common.py, this file contains all the classes of the blocks

that we can use in YOLO, we just have to add the SE class.

-

Figure 25 SE class

- yolo.py: To modify the parse_model function, just add a condition for the SE module,

otherwise we would have a problems with the channel numbers.

Figure 26 SE channel code

- yaml file: In this file we have the architecture, we must add the layers of SE.

In this project 6 different architectures were made:

1. SE backbone: SE at backbone.

2. Standard SE: SE after the residual.

3. SE pre block: SE before the residual.

4. SE post block: SE after the concatenation.

5. SE pre and post block: Combination between pre and post block

6. SE other: according to paper [16].

35

Each architecture must have a different yaml file. In Fig 17 we can see the example of the

architecture that must be followed for the SE backbone. For other architectures see below this

section.

According to the backbone architecture, Fig. 17, only one SE layer should be added in layer 10, we
also have to change from which layer it has to be concatenated (Concat block) and detect (Detect
block), since now we have more layers.

The code of the yaml file would be the following:

Figure 27 SE backbone architecture code

36

Next, we show the other architectures with SE that are used in this project:

Figure 28 SE backbone

Figure 29 Standard SE

Figure 30 SE pre Figure 31 SE post

37

Figure 32 SE pre and post

Figure 33 SE other [16]

38

B. CBAM implementation

For the implementation of CBAM, a procedure similar to SE is followed, with some differences.

- Modifications in common.py: To use the CBAM module we need to implement Channel and

Spatial Attention, so in common.py three classes are added.

Figure 34 Channel Attention class

Figure 35 Spatial Attention class

Figure 36 CBAM class

39

As CBAM has to go after the convolutions, specifically after the YOLO C3 block, we can have a block

in which everything is already together, for this we create a C3_CBAM class as in Fig 32

Figure 37 CBAM with C3 block

- yolo.py: To modify the parse_mode function, just add the class name to the condition like the

others blocks, no need to change the channel numbers.

Figure 38 CBAM channel code

- yaml file: In the case of the CBAM, we just have to change the name of the C3 block, to

C3_CBAM in the blocks of the backbone, see the architecture diagram in Fig. 19 and the code

in the next figure.

Figure 39 CBAM architecture code

40

C. Faster RCNN, RetinaNet and SSD

Loss graph and metrics of the three models, Faster RCNN, Retina Net and SSD.

Faster RCNN

Loss

Iterations

F-score

Epoch

(a) Loss with smoothing

(b) F-score with 0.62 conf. threshold

mAP@0.50

Epoch

mAP@0.50:0.95

Epoch

(c) PASCAL VOC mAP (d) COCO mAP

Figure 40 Faster RCNN – Loss and metrics
Orange: training, Blue: validation, Red: test

Faster RCNN Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Validation 0.8753 0.9331 0.9033 0.9194 0.6152

Test 0.8913 0.9638 0.9261 0.9412 0.6390

Table 13 Faster RCNN - metric numbers

41

Retina Net

Loss

Iterations

F-score

Epoch

(a) Loss with smoothing

(b) F-score with 0.62 conf. threshold

mAP@0.50

Epoch

mAP@0.50:0.95

Epoch

(c) PASCAL VOC mAP (d) COCO mAP

Figure 41 Retinanet - Loss and metrics
Orange: training, Blue: validation, Light blue: test

RetinaNet Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Validation 0.9369 0.8155 0.8720 0.9180 0.6101

Test 0.9407 0.8719 0.9050 0.9489 0.6513

Table 14 Retina Net - metric numbers

42

SSD

Loss

Iterations

F-score

Epoch

(a) Loss with smoothing

(b) F-score with 0.62 conf. threshold

mAP@0.50

Epoch

mAP@0.50:0.95

Epoch

(c) PASCAL VOC mAP (d) COCO mAP

Figure 42 SSD - Loss and metrics
Orange: training, Blue: validation, Light blue: test

SSD Precision Recall F-score mAP@0.50 mAP@0.50:0.95

Validation 0.9501 0.4789 0.6368 0.8491 0.5351

Test 0.9562 0.5599 0.7063 0.9133 0.5842

Table 15 SSD - metric numbers

43

Glossary

Abbreviations

BIOCOMSC Computational Biology and Complex Systems, research group in Universitat

Politècnica de Catalunya.

DTIM Database Technologies and Information Management Group, research group in

Universitat Politècnica de Catalunya.

ETSETB Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona.

FN False negative

FP False positive

GPI Video and Image Processing group at Signal Theory and Communications
Department in Universitat Politècnica de Catalunya.

GPU Graphics Processing Unit

GT Ground truth

IoU Intersection over Union

JSON JavaScript Object Notation

mAP mean Average Precision

RCNN Region based convolutional neural network

RPN Region Proposal Network

SSD Single Shoot MulitBox Detector

TN True negative
TP True positive

UPC Universitat Politècnica de Catalunya

VHIR Vall d'Hebron Research Institute

YOLO You Only Look One

