6,344 research outputs found

    A Symbolic Execution Algorithm for Constraint-Based Testing of Database Programs

    Full text link
    In so-called constraint-based testing, symbolic execution is a common technique used as a part of the process to generate test data for imperative programs. Databases are ubiquitous in software and testing of programs manipulating databases is thus essential to enhance the reliability of software. This work proposes and evaluates experimentally a symbolic ex- ecution algorithm for constraint-based testing of database programs. First, we describe SimpleDB, a formal language which offers a minimal and well-defined syntax and seman- tics, to model common interaction scenarios between pro- grams and databases. Secondly, we detail the proposed al- gorithm for symbolic execution of SimpleDB models. This algorithm considers a SimpleDB program as a sequence of operations over a set of relational variables, modeling both the database tables and the program variables. By inte- grating this relational model of the program with classical static symbolic execution, the algorithm can generate a set of path constraints for any finite path to test in the control- flow graph of the program. Solutions of these constraints are test inputs for the program, including an initial content for the database. When the program is executed with respect to these inputs, it is guaranteed to follow the path with re- spect to which the constraints were generated. Finally, the algorithm is evaluated experimentally using representative SimpleDB models.Comment: 12 pages - preliminary wor

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas

    CREOLE: a Universal Language for Creating, Requesting, Updating and Deleting Resources

    Get PDF
    In the context of Service-Oriented Computing, applications can be developed following the REST (Representation State Transfer) architectural style. This style corresponds to a resource-oriented model, where resources are manipulated via CRUD (Create, Request, Update, Delete) interfaces. The diversity of CRUD languages due to the absence of a standard leads to composition problems related to adaptation, integration and coordination of services. To overcome these problems, we propose a pivot architecture built around a universal language to manipulate resources, called CREOLE, a CRUD Language for Resource Edition. In this architecture, scripts written in existing CRUD languages, like SQL, are compiled into Creole and then executed over different CRUD interfaces. After stating the requirements for a universal language for manipulating resources, we formally describe the language and informally motivate its definition with respect to the requirements. We then concretely show how the architecture solves adaptation, integration and coordination problems in the case of photo management in Flickr and Picasa, two well-known service-oriented applications. Finally, we propose a roadmap for future work.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    ILP Modulo Data

    Get PDF
    The vast quantity of data generated and captured every day has led to a pressing need for tools and processes to organize, analyze and interrelate this data. Automated reasoning and optimization tools with inherent support for data could enable advancements in a variety of contexts, from data-backed decision making to data-intensive scientific research. To this end, we introduce a decidable logic aimed at database analysis. Our logic extends quantifier-free Linear Integer Arithmetic with operators from Relational Algebra, like selection and cross product. We provide a scalable decision procedure that is based on the BC(T) architecture for ILP Modulo Theories. Our decision procedure makes use of database techniques. We also experimentally evaluate our approach, and discuss potential applications.Comment: FMCAD 2014 final version plus proof

    Test-Case Generation for SQL Nested Queries with Existential Conditions

    Get PDF
    This paper presents a test-case generator for SQL queries.Starting with a set of related SQL views that can include existential subqueries in the conditions,the technique finds a database instance that can be used as a test-case for the target view.The proposal reduces the problem of generating the test-cases to a Constraint Satisfaction Problem using finite domain constraints. In particular, we present a new approach for existential conditions that makes possible to find test-cases for a wider set of queries. The soundness and correctness of the technique with respect to a simple operational semantics for SQL queries without aggregates is proven. The theoretical ideas have been implemented in an available prototype
    • …
    corecore