35 research outputs found

    Quantum Circuit Implementation and Resource Analysis of LBlock and LiCi

    Full text link
    Due to Grover's algorithm, any exhaustive search attack of block ciphers can achieve a quadratic speed-up. To implement Grover,s exhaustive search and accurately estimate the required resources, one needs to implement the target ciphers as quantum circuits. Recently, there has been increasing interest in quantum circuits implementing lightweight ciphers. In this paper we present the quantum implementations and resource estimates of the lightweight ciphers LBlock and LiCi. We optimize the quantum circuit implementations in the number of gates, required qubits and the circuit depth, and simulate the quantum circuits on ProjectQ. Furthermore, based on the quantum implementations, we analyze the resources required for exhaustive key search attacks of LBlock and LiCi with Grover's algorithm. Finally, we compare the resources for implementing LBlock and LiCi with those of other lightweight ciphers.Comment: 29 pages,21 figure

    Social Closeness Based Private Coordinating Conventions for Online Informal Organizations

    Get PDF
    The hazardous development of Online Interpersonal organizations in the course of recent years has re-imagined the way individuals collaborate with existing companions and particularly make new companions. A few works propose to give individuals a chance to wind up companions on the off chance that they have comparative profile attributes. In any case, profile coordinating includes a natural protection danger of uncovering private profile data to outsiders in the internet. The current answers for the issue endeavor to ensure clients' protection by secretly figuring the convergence or crossing point cardinality of the profile quality arrangements of two clients. These plans have a few impediments can in any case uncover clients' protection. In this project, we influence group structures to reclassify the Online Social Networks(OSN) display and propose a practical awry social closeness measure between two clients. At that point, in light of the proposed hilter kilter social nearness, along with AES algorithm we outline three private coordinating conventions, which give diverse security levels and can ensure clients' protection superior to the past works. At long last, we approve our proposed unbalanced closeness measure utilizing genuine interpersonal organization information and lead broad reenactments to assess the execution of the proposed conventions regarding calculation cost, correspondence cost, add up to running time, and vitality utilization

    New Differential Cryptanalysis Results for the Lightweight Block Cipher BORON

    Get PDF
    BORON is a 64-bit lightweight block cipher based on the substitution-permutation network that supports an 80-bit (BORON-80) and 128-bit (BORON-128) secret key. In this paper, we revisit the use of differential cryptanalysis on BORON in the single-key model. Using an SAT/SMT approach, we look for differentials that consist of multiple differential characteristics with the same input and output differences. Each characteristic that conforms to a given differential improves its overall probability. We also implemented the same search using Matsui\u27s algorithm for verification and performance comparison purposes. We identified high-probability differentials which were then used in key recovery attacks against BORON-80/128. We first show that the previous differential cryptanalysis attack against 9-round of BORON was at most an 8.5 round attack due to the omission of the final block XOR layer. Then, we used 8-round differentials with a probability of 258.1562^{-58.156} and 262.4152^{-62.415} in key recovery attacks against 9 and 10 rounds of BORON-80 and BORON-128 with time/data/memory complexities of {263.63/262/2552^{63.63}/2^{62}/2^{55} and 2100.28/264/2712^{100.28}/2^{64}/2^{71}} respectively. Our key recovery framework provides a more accurate estimate of the attack complexity as compared to previous work. The attacks proposed in this paper are the best differential attacks against BORON-80/128 in the single-key model to date

    Tradeoff Attacks on Symmetric Ciphers

    Get PDF
    Tradeoff attacks on symmetric ciphers can be considered as the generalization of the exhaustive search. Their main objective is reducing the time complexity by exploiting the memory after preparing very large tables at a cost of exhaustively searching all the space during the precomputation phase. It is possible to utilize data (plaintext/ciphertext pairs) in some cases like the internal state recovery attacks for stream ciphers to speed up further both online and offline phases. However, how to take advantage of data in a tradeoff attack against block ciphers for single key recovery cases is still unknown. We briefly assess the state of art of tradeoff attacks on symmetric ciphers, introduce some open problems and discuss the security criterion on state sizes. We discuss the strict lower bound for the internal state size of keystream generators and propose more practical and fair bound along with our reasoning. The adoption of our new criterion can break a fresh ground in boosting the security analysis of small keystream generators and in designing ultra-lightweight stream ciphers with short internal states for their usage in specially low source devices such as IoT devices, wireless sensors or RFID tags

    Fully Collision-Resistant Chameleon-Hashes from Simpler and Post-Quantum Assumptions

    Get PDF
    Chameleon-hashes are collision-resistant hash-functions parametrized by a public key. If the corresponding secret key is known, arbitrary collisions for the hash can be found. Recently, Derler et al. (PKC \u2720) introduced the notion of fully collision-resistant chameleon-hashes. Full collision-resistance requires the intractability of finding collisions, even with full-adaptive access to a collision-finding oracle. Their construction combines simulation-sound extractable (SSE) NIZKs with perfectly correct IND-CPA secure public-key encryption (PKE) schemes. We show that, instead of perfectly correct PKE, non-interactive commitment schemes are sufficient. For the first time, this gives rise to efficient instantiations from plausible post-quantum assumptions and thus candidates of chameleon-hashes with strong collision-resistance guarantees and long-term security guarantees. On the more theoretical side, our results relax the requirement to not being dependent on public-key encryption

    Side-channel Attacks on Blinded Scalar Multiplications Revisited

    Get PDF
    In a series of recent articles (from 2011 to 2017), Schindler et al. show that exponent/scalar blinding is not as effective a countermeasure as expected against side-channel attacks targeting RSA modular exponentiation and ECC scalar multiplication. Precisely, these works demonstrate that if an attacker is able to retrieve many randomizations of the same secret, this secret can be fully recovered even when a significative proportion of the blinded secret bits are erroneous. With a focus on ECC, this paper improves the best results of Schindler et al. in the specific case of structured-order elliptic curves. Our results show that larger blinding material and higher error rates can be successfully handled by an attacker in practice. This study also opens new directions in this line of work by the proposal of a three-steps attack process that isolates the attack critical path (in terms of complexity and success rate) and hence eases the development of future solutions

    SAND: an AND-RX Feistel lightweight block cipher supporting S-box-based security evaluations

    Get PDF
    We revisit designing AND-RX block ciphers, that is, the designs assembled with the most fundamental binary operations---AND, Rotation and XOR operations and do not rely on existing units. Likely, the most popular representative is the NSA cipher \texttt{SIMON}, which remains one of the most efficient designs, but suffers from difficulty in security evaluation. As our main contribution, we propose \texttt{SAND}, a new family of lightweight AND-RX block ciphers. To overcome the difficulty regarding security evaluation, \texttt{SAND} follows a novel design approach, the core idea of which is to restrain the AND-RX operations to be within nibbles. By this, \texttt{SAND} admits an equivalent representation based on a 4×84\times8 \textit{synthetic S-box} (SSbSSb). This enables the use of classical S-box-based security evaluation approaches. Consequently, for all versions of \texttt{SAND}, (a) we evaluated security bounds with respect to differential and linear attacks, and in both single-key and related-key scenarios; (b) we also evaluated security against impossible differential and zero-correlation linear attacks. This better understanding of the security enables the use of a relatively simple key schedule, which makes the ASIC round-based hardware implementation of \texttt{SAND} to be one of the state-of-art Feistel lightweight ciphers. As to software performance, due to the natural bitslice structure, \texttt{SAND} reaches the same level of performance as \texttt{SIMON} and is among the most software-efficient block ciphers

    Fully Invisible Protean Signatures Schemes

    Get PDF
    Protean Signatures (PS), recently introduced by Krenn et al. (CANS \u2718), allow a semi-trusted third party, named the sanitizer, to modify a signed message in a controlled way. The sanitizer can edit signer-chosen parts to arbitrary bitstrings, while the sanitizer can also redact admissible parts, which are also chosen by the signer. Thus, PSs generalize both redactable signature (RSS) and sanitizable signature (SSS) into a single notion. However, the current definition of invisibility does not prohibit that an outsider can decide which parts of a message are redactable - only which parts can be edited are hidden. This negatively impacts on the privacy guarantees provided by the state-of-the-art definition. We extend PSs to be fully invisible. This strengthened notion guarantees that an outsider can neither decide which parts of a message can be edited nor which parts can be redacted. To achieve our goal, we introduce the new notions of Invisible RSSs and Invisible Non-Accountable SSSs (SSS\u27), along with a consolidated framework for aggregate signatures. Using those building blocks, our resulting construction is significantly more efficient than the original scheme by Krenn et al., which we demonstrate in a prototypical implementation
    corecore