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Chapter

Tradeoff Attacks on Symmetric
Ciphers
Orhun Kara

Abstract

Tradeoff attacks on symmetric ciphers can be considered as the generalization of
the exhaustive search. Their main objective is reducing the time complexity by
exploiting the memory after preparing very large tables at a cost of exhaustively
searching all the space during the precomputation phase. It is possible to utilize data
(plaintext/ciphertext pairs) in some cases like the internal state recovery attacks for
stream ciphers to speed up further both online and offline phases. However, how to
take advantage of data in a tradeoff attack against block ciphers for single key
recovery cases is still unknown. We briefly assess the state of art of tradeoff attacks
on symmetric ciphers, introduce some open problems and discuss the security
criterion on state sizes. We discuss the strict lower bound for the internal state size
of keystream generators and propose more practical and fair bound along with our
reasoning. The adoption of our new criterion can break a fresh ground in boosting
the security analysis of small keystream generators and in designing ultra-
lightweight stream ciphers with short internal states for their usage in specially low
source devices such as IoT devices, wireless sensors or RFID tags.

Keywords: symmetric cipher, block cipher, stream cipher, tradeoff attack,
keystream, keystream generator, Hellman table, rainbow table, one-way function,
preimage

1. Introduction

In general, bulk encryption is performed through symmetric ciphers; that is,
block ciphers or stream ciphers. Hash functions, message authentication codes and
authenticated encryption schemes are also based on the quite similar design and
security principles. All these cryptographic primitives are examples of one-way
functions for which it must be computationally infeasible to find a preimage.
Indeed, the only generic method to invert a given output is exhaustively searching
for one of its inputs.1 This may be embodied as brute force attacks on block ciphers
and stream ciphers, internal state recovery attacks on keystream generators,
preimage attacks on hash functions or constructing valid messages to given tag
values for message authentication codes.

The brute force attacks can be expedited significantly by utilizing very large
tables that have been already prepared during the offline phase. This phase is called
the precomputation phase also and is usually equivalent to exhaustive search. Nev-
ertheless, once it is executed, the prepared tables can be used several times.

1

Permutations as one-way functions are out of scope of this chapter.
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It may be possible to further improve a tradeoff attack by exploiting large
amount of data (plaintext/ciphertext pairs). Biryukov-Shamir attack on keystream
generators can be considered as a typical example of a tradeoff among time, mem-
ory and data [1]. One of the internal states of a long keystream sequence is recov-
ered. However, it is still unknown how to use data to improve the tradeoff attacks
on block ciphers.

The state sizes of block ciphers are not of security concern against tradeoff
attacks, enabling to design ultra-lightweight block ciphers. In fact, we encounter
several such block cipher designs in the literature during the last decades [2–9].
However, it seems to be almost impossible to design ultra-lightweight stream
ciphers due to their strict security criterion on the lower bound of their internal
state sizes to resist tradeoff attacks.

The tradeoff attacks can be quite effective against some real world cryptographic
primitives. The tradeoff tables can be used in practical applications to break real life
ciphers such as A5/1 for the GSM encryption [10–12] or to crack passwords by
finding preimages to hash functions [13–17]. In this chapter, we introduce briefly
how to use tradeoff tables to invert small sized one-way functions. Moreover, we
evaluate the state of art of the applications, raise some open problems and come up
with a discussion on the countermeasures against tradeoff attacks on keystream
generators.

We argue that it is possible to loosen the lower bound for the state size without
sacrificing the security against tradeoff attacks and this can enable designing ultra-
lightweight stream ciphers. We claim that the lower bound for the internal state size
can be diminished to 4n=3 bits from 2n bits where n is the key length. It is possible
to design a keystream generator of size 4n=3 bits, which remains still secure against
tradeoff attacks and which presents a great advantage in low cost applications.
Indeed, such ciphers are in real world demand due to the confidentially issues of
lightweight devices such as RFID tags, wireless sensors or IoT devices.

It is straightforward that resistance against tradeoff attacks is not sufficient for
security. Unfortunately, the security of small stream ciphers has not been studied
sufficiently so far. We still do not know how to design secure and small stream
ciphers. This is due to fact that almost all the stream ciphers in the literature have
internal state sizes at least twice as large as their key sizes. Hence, there is almost no
example in the literature to analyze. The recent small keystream generators such as
Sprout [18] or Plantlet [19] are analyzed intensively in a short while and several
weaknesses are discovered [20–26].

The tradeoff attacks on block ciphers so far are limited to the tradeoff between
only time and memory. It is an open problem how to construct a tradeoff curve
between memory and data or among memory, data and time for a single key
recovery attack. We phrase the problem of inverting one-way function with data, the
problem of mutual inverting of multiple one-way functions and the problem of
inverting only one of the several independent one-way functions. Moreover, we address
these problems with block ciphers and raise a question about the hierarchical rela-
tionships between any pair of them.

The outline of the chapter is as follows. We briefly overview the tradeoff attacks
on symmetric ciphers, give some recent applications of these attacks and evaluate
them in Section 2. Then, we assess the tradeoff attacks on stream ciphers and
keystream generators in Section 3. We also introduce the tradeoff attacks on block
ciphers, discuss the differences from those on stream ciphers and state some open
problems in Section 4. We assess the internal state recovery tradeoff attacks and
make an argument about the internal state sizes of keystream generators in Section
5. Finally, we introduce our concluding remarks in Section 6.

2
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2. Inverting a one-way function through tradeoff

Let f : GF 2ð Þm ! GF 2ð Þn be a one-way function of m�bit input and n�bit
output. That is, it is easy to compute the output, f xð Þ ¼ y, of a given input

x∈GF 2ð Þm; but computationally infeasible to find a preimage x∈ f�1 yð Þ for a given
output y∈GF 2ð Þn.

The phrase” computationally infeasible” is not a formal or a precise statement.

Indeed, we mean that the fastest algorithm of finding a preimage x∈ f�1 yð Þmust be
exhaustively searching for x, either online or offline. This definition is valid for
random one-way functions which are generally not permutations. The one-way
functions deduced from symmetric ciphers are examples and we consider them
only throughout the chapter. The time complexity of recovering one preimage of a
given value y∈GF 2ð Þn is about T ¼ 2n calls of the f�function (simply 2n) for a one-
way function f . There is almost no memory or data complexity. Hence this can be
considered as one of the extreme cases where only the time complexity dominates.

The time complexity may be substituted by the memory complexity if we
compute all the x, f xð Þð Þ values in advance during the offline phase (which we call
precomputation phase) and save them in a sorted table with respect to the second
column, f xð Þ. Then, the time complexity of the precomputation phase is 2n and the
memory complexity is M ¼ 2n. On the other hand, the time complexity of finding a

preimage x∈ f�1 yð Þ for a given y during the online phase is relatively negligible in
comparison to the memory complexity. One needs to search for y in the second
column of the table and this search takes roughly n steps since the table is sorted.
This is also one of the extreme cases where only the memory complexity dominates.

In general, we can regard the tradeoff attacks as the attacks searching for a
preimage of a one-way function by utilizing a significant memory prepared in the
precomputation phase to reduce the time complexity from 2n. A tradeoff curve
between memory and time is introduced with possibly some restrictions. The time
complexity is decreased by increasing the memory complexity or vice versa. But the
ratio of increase/decrease depends on the tradeoff curve. In general, the optimum
point on the curve is considered as the point where T ¼ M if the restrictions permit
to choose this point. Let us remark that the precomputation phases of these attacks
must be the whole exhaustive search to provide significantly high success rates. But,
since this offline phase is run only once, its complexity can be ignored in some
applications where one uses the tables several times to invert enormous number of
outputs. The Hellman tables or the rainbow tables for the GSM encryption algo-
rithm A5/1 are typical real world applications [10, 12].

It is possible to ease the problem of inverting a one-way function f by introduc-
ing large number of data. Then the corresponding tradeoff attacks can be further
improved by constructing better tradeoff curves with the addition of the amount of
data used.

We can define the problem of inverting one-way function with data as follows. Let
y1, … , yD ∈GF 2ð Þn be given. Then, find a preimage for one of them. That is, find xi
such that f xið Þ ¼ yi. This problem is easier than finding a preimage of only one

given element y∈GF 2ð Þn. Indeed, it is possible to prepare a sorted list of y1, … , yD
and then search for x such that f xð Þ is in this sorted list. It is clear that the time
complexity of the exhaustive search is 2n=D. Hence, the time complexity of the
default attack for inverting one-way function with data is reduced by a factor of D.

It is possible to address the problem of inverting one-way function with data in
stream ciphers and mount some tradeoff attacks for single key setting. We intro-
duce these attacks in Section 3. However, it is not known in the literature yet how to
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associate a single key recovery attack for a block cipher as a problem of inverting
one-way function with data (see Section 4 for details of the tradeoff attacks in the
case of block ciphers).

2.1 Hellman and rainbow tables

One very well known way of inverting a one-way function is using Hellman
tables [27]. Initially, Hellman introduced the tables only for recovering the DES
keys in his original work in [27] but it can be used to invert any one-way function.

Let us assume that the input and the output sizes of a one-way function, f , are
equal. That is, f : GF 2ð Þn ! GF 2ð Þn. The general cases may easily be deduced by the
reduction or enlargement techniques as Hellman applied for the DES encryption by
reducing its block size to 56 bits. Let x∈GF 2ð Þn be an input. Then, compute

f xð Þ, f 2 xð Þ, … , f t xð Þ and save the pair, x, f t xð Þ
� �

.

If a given value y∈GF 2ð Þn is equal to f i xð Þ for some i∈ 1, … , tf g then we can

find a preimage for y easily: f i�1 xð Þ will be a preimage since f f i�1 xð Þ
� �

¼ y. We

can check if y ¼ f i xð Þ for some i by checking the equality f t�i yð Þ ¼ f t xð Þ. Indeed
we have

f t�i f i xð Þ
� �

¼ f t xð Þ ¼ f t�i yð Þ: (1)

Therefore, it is highly probable that y ¼ f i xð Þ. It may be possible that y 6¼ f i xð Þ
even though f t�i yð Þ ¼ f t xð Þ since f is not a permutation. This case is considered as a
false alarm. The probability of the false alarms should be taken into account for the
success rate of the attack. Gildas et al. introduce an efficient way of ruling out the
false alarms, particularly in the perfect tables [28].

Choosing m different x points and preparing a table of m pairs x, f t xð Þ
� �

sorted

with respect to f t xð Þ (which is called a Hellman table), it is possible to find a

preimage of a given output y∈GF 2ð Þn if y ¼ f i xð Þ for some x in these m pairs by
calling the f function and checking if the result is among the second (sorted) values

of the pairs x, f t xð Þ
� �

at most t times. Therefore, examining if y is in the set

f i xð Þ
n o

with m � t elements, costs t calls of f and the memory amount we need is m

since we save m pairs for one table of m � t elements. These m pairs consist of the
initial and the final columns of the table.

The most significant disadvantage of Hellman tables is the high propagation of

the collisions throughout the rows. If f i xð Þ ¼ f j x0ð Þ for some 1≤ i, j< t and different
starting points x 6¼ x0, then the collision is going to merge to the rest of the rows as

f iþk xð Þ ¼ f jþk x0ð Þ ∀k ¼ 1, … , min t� i, t� jf g. This restricts the capacity of a
Hellman table. Indeed, we should choose the number of the rows and the columns
m and t such that mt2 ≤ 2n to optimize the probability of collisions according to the
birthday paradox [27]. Therefore, we need roughly t tables since one table can
contain at most mt different elements and each Hellman table must be prepared by
using a different function deduced from a slight derivation of the f-function so as to
ensure the independence of the tables.

The time complexity is T ¼ t2 since examining through one table costs t calls of
the f -function and we have t tables. Similarly, we need M ¼ mt memory to save t

tables. As a corollary, the tradeoff curve M2T ¼ 22n is deduced with mt2 ¼ 2n.

The optimum point on the curve is T ¼ M ¼ 22n=3. The precomputation phase for
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preparing the tables is equivalent to the exhaustive search and hence its
complexity is 2n.

Oechslin introduces another kind of tables to invert one-way functions, which
he calls rainbow tables [29]. He proposes to use a different function for the
computation of each column and hence each row is constituted as

f 1 xð Þ, f 2 f 1 xð Þ
� �

, … , f t f t�1 ⋯ f 1 xð Þ
� �� �

(2)

instead of f xð Þ, f 2 xð Þ, … , f t xð Þ for a chosen starting point x where f is are
derived from f by slight modifications. Only the initial point x and its final evalua-

tion f t f t�1 ⋯ f 1 xð Þ
� �� �

are saved as in the case of Hellman tables.

Rainbow tables have a significant advantage over Hellman tables: The collisions in
different columns do not propagate in rainbow tables. So, it is possible to use only one
rainbow table for covering majority of the space GF 2ð Þn. The table contains t columns
andmt rows. However, tracing through a rainbow table costs much more. For a given
output y, check if it is in the last column. If not then check f t yð Þ and then f t f t�1 yð Þ

� �

and then, f t f t�1 f t�2 yð Þ
� �

and so on are in the last column one by one.
Both the Hellman tables and the rainbow tables have the same tradeoff curve.

But, the time complexity is t t� 1ð Þ=2 for a rainbow table which is roughly twice less
than t2. This makes rainbow tables more popular in practical applications.

Barkan et al. compares these two methods and combine them in a general model
based on stateful random graphs [30]. They also improve the time complexity of the
rainbow tables [30]. Lu et al. use the unified rainbow tables to break GSM A5/1
algorithm and recover an A5/1 key in 9 s with a success rate of 81% by using general
purpose GPUs with 3 NVIDIA GeForce GTX690 cards [12]. There are also FPGA
implementation versions of tracing through the rainbow tables of the A5/1 states
[10, 11]. The success rates of the rainbow tables for A5/1 are improved in [12].
Rainbow tables are commonly used to invert hash functions and crack passwords
[13–17]. Even though rainbow tables are ubiquitously used in the real world appli-
cations, Biryukov et al. show that Hellman tables are superior to rainbow tables in
multiple data scenario [31].

3. Tradeoff attacks on stream ciphers

The main building blocks of (synchronous) stream ciphers are keystream gen-
erators. The most general design principle of keystream generators make use of a
state update function ϕ : GF 2ð Þs ! GF 2ð Þs and an output function g : GF 2ð Þs !
GF 2ð Þr producing r-bit output from each s-bit internal state. An internal state St is
updated to the next internal state Stþ1 via ϕ. The initial internal state S0 is called the
seed and produced from a key K and an initial vector IV through an initialization
algorithm InAlg:

InAlg : GF 2ð Þn � GF 2ð Þl ! GF 2ð Þs

K, IVð Þ↦ S0:
(3)

The objective of the attacks on stream ciphers is twofold in general. They aim at
either recovering the key or an internal state. The same approach is adopted for
tradeoff attacks. The state recovery attacks are conventional examples of the prob-
lem of inverting one-way function with data in a single key attack scenario. Indeed,
it is enough to recover one of the internal states occurred during the encryption
process.
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Babbage [32] and Golić [33] independently introduce a natural way of recover-
ing one of the internal states by using data. They define a one-way function by
extending the output function which produces enough number of output bits by
calling ϕ and g certain number of times consecutively to identify the input state
from its keystream piece uniquely. One can compute M pairs of the states and their
outputs during the precomputation phase and save them as sorted with respect to
the outputs. Then, it is highly probable to recover one of the states which produce D
data when MD≥ 2s during the online phase. The optimum point on the tradeoff

curve MD ¼ 2s is M ¼ D ¼ 2s=2. So, s=2 is supposed to be larger than the key length
to ensure that the Babbage-Golić attack is slower than the exhaustive search. This
imposes a well known and highly adopted security criterion on stream ciphers: The
internal state size must be at least twice as large as the key size. It was one of the
main security requirements for the stream ciphers in both the NESSIE project [34]
and the eSTREAM project [35, 36].

Another tradeoff attack on keystream generators using data is introduced by
Biryukov and Shamir [1]. They propose to use Hellman tables to recover one of the
internal states which produce D data. It is nothing but finding a preimage for one of
the data. The optimum online complexity is achieved when only one Hellman table
is constructed. So, mt2 ¼ 2s and D ¼ t with M ¼ m,T ¼ tD. Hence, we have the

tradeoff curve given as M2D2T ¼ 22s with the restriction D≤
ffiffiffiffi

T
p

. The optimum

point on the curve is achieved when D2 ¼ T ¼ M and this gives T ¼ 2s=2. Again, if
s≥ 2n then the online phase of the Biryukov-Shamir attack will be slower than the
exhaustive search, confirming the security criterion that the internal state size
should be at least twice as large as the key size.

Both the Babbage-Golić attack and the Biryukov-Shamir attack aim at recover-
ing one of the internal states. The online phases of these attacks are compared with
the exhaustive search rather than the default tradeoff attacks. The attacks use
multiple data since the one-way function they would like to invert has several
outputs available. On the other hand, it is possible to define the one-way function as
the function taking the n-bit main key as input and producing the keystream of n-
bits for a chosen fixed IV. The internal state size has no significance for inverting

this one-way function. So, we have the classical complexities T ¼ M ¼ 22n=3.
However, we can not exploit the multiple data for this function. Therefore the
Babbage-Golić attack and the Biryukov-Shamir attack are superior when the
internal state size is too short. The tradeoff attacks on the GSM encryption algo-
rithm A5/1 with its 64 bit internal state are mostly the applications of the
Biryukov-Shamir attack [10–12].

Armknecht and Mikhalev examine the keyed update functions and show that
the keystream generators with keyed state update functions are secure against
conventional tradeoff attacks no matter how small the internal state sizes are [18].
They also introduce an example cipher they call Sprout [18]. A keyed state update
function takes the main key as the second parameter of the input to produce the
next internal state from the current internal state.

The cipher Sprout is analyzed intensively in a short while and some weaknesses
are discovered [20, 22]. More interestingly, special tradeoff attacks are mounted
[21, 23]. Then, Armknecht and Mikhalev present another keystream generator with
keyed state update. They call it Plantlet [19]. This cipher also attains significant
interests of cyrptanalysts and several results are published including correlation
attacks [24–26, 37, 38], some of them are even faster than exhaustive search [25]. It
seems that it is indeed a challenging task for the crypto community to design
keystream generators of small state sizes even if the tradeoff attacks are ignored in
their security assessments.
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4. Tradeoff attacks on block ciphers

Let E : GF 2ð Þn �GF 2ð Þm ! GF 2ð Þm be a block cipher of n-bit key and m-bit
block size. E K,Pð Þ ¼ EK Pð Þ and EK is a permutation for a fixed key K. We can
define a one-way function f xð Þ ¼ E x,P0ð Þ ¼ Ex P0ð Þ for a chosen fixed plaintext P0.
Finding a preimage for a given ciphertext is nothing but finding a key candidate
that encrypts the plaintext P0 to the given ciphertext.

It is possible to invert f xð Þ by using tradeoff tables. Hellman initially mounted
the tradeoff attack on the block cipher DES in his original work [27]. The online

time complexity is reduced to 22n=3. But preparing the tables requires as many
encryption calls as in the exhaustive search.

There is no known method of using multiple data to improve the tradeoff curve

M2T ¼ 22n in the single key recovery setting for block ciphers yet. Choosing another
plaintext will result in another one-way function to convert. So, using multiple data
yields the following problem. Let f 1, … , fD be D independent one-way functions of
n-bit inputs and n-bit outputs. We call the problem of finding x as the problem of
the mutual inverting of multiple one-way functions where

f 1 xð Þ ¼ y1, f 2 xð Þ ¼ y2, … , fD xð Þ ¼ yD (4)

and y1, … , yD are given.
Choosing D different plaintexts P1, … ,PD for a block cipher E is an example of

the problem of the mutual inverting of multiple one-way functions given as:
f 1 xð Þ ¼ Ex P1ð Þ, f 2 xð Þ ¼ Ex P2ð Þ, … , fD xð Þ ¼ Ex PDð Þ. Here x is the key and we have
D chosen plaintexts encrypted with x. Then, finding x becomes a mutual inverting
problem of multiple one-way functions.

The problem may further be generalized as inverting only one of the D inde-
pendent one-way functions. Let

f 1 x1ð Þ ¼ y1, f 2 x2ð Þ ¼ y2, … , fD xDð Þ ¼ yD (5)

be given for D independent one-way functions f 1, … , fD. The goal is to find one
of xi for i ¼ 1, … ,D.

The problem of mutual inverting multiple one-way functions can be applied to
stream ciphers also. Several one-way functions may be defined by choosing several
IVs. Each IV determines a one-way function taking the key as the input and
producing n-bit keystream. That is, each one-way function f IV : GF 2ð Þn ! GF 2ð Þn
is defined as

f IV Kð Þ ¼ z1, … , znð Þ (6)

where K is an n-bit key and z1, … , znð Þ is the first n-bit keystream segment
produced by the pair K, IVð Þ. The function f IV can be inverted by the conventional
Hellman tables or rainbow tables. Finding preimage for one specific f IV can be
considered as the default tradeoff attack on stream ciphers and its online

complexity is given as 22n=3.
It may be still possible to use any number of IVs. For the single key attack

scenario, the keystream generator is initialized by several different IVs and the
corresponding n-bit keystream segments are produced. Then, the unknown inputs
of the one-way functions will be mutual, namely the main key.

It seems that inverting only one specific one-way function once is not easier than
the other two problems. One can use the algorithm of inverting a one-way function
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to invert one of D one-way functions. So, an algorithm inverting a one-way func-
tion can be used to solve the problem of inverting at least one function among D
one-way functions. Similarly, any algorithm inverting one of D one-way functions
can straightforwardly be used to solve the mutual inverting problem.

It is not known yet if these three problems are of equal difficulty. It is an open
problem if the mutual inverting problem is strictly easier than the problem of
inverting one of the several one-way functions. It is also an open problem that
inverting one of the several one-way functions is strictly easier than inverting only
one one-way function. If there is an algorithm solving problem of mutual inverting
problem but not solving the problem of inverting one-way function then the secu-
rity levels and the key lengths for both block ciphers and stream ciphers must be
assessed again. Because, the algorithms solving mutual inverting problems
efficiently can be very powerful and serious attacks on symmetric ciphers.

5. Assessment of security criterion on state size

The online complexities of both the Babbage-Golić and the Biryukov-Shamir
attacks are compared to the complexity of the exhaustive search and the security
criterion on the state size of a stream cipher is imposed thereof. However, there is
still a faster tradeoff attack even though the internal state size is larger than twice of
the key size. It is possible to define a one-way function from a main key to its
keystream piece of a stream cipher by choosing and fixing an IV. Then, one of the
preimages of the keystream segment will be the main key. The attack complexity is
derived from the key size rather than the internal state size. At the optimum point

of the tradeoff curve, the online complexity is 22n=3 where n is the key length. This is
the default Hellman or Oechslin tradeoff attacks and valid for block ciphers also.
Note that the complexity is much smaller than 2n, the complexity of the exhaustive
search.

Any tradeoff attack on symmetric ciphers should be compared with the default

tradeoff attack with its complexity 22n=3, instead of the exhaustive search. In this
case, the strict criterion on the internal state size can be lightened, enabling to
design ultra-lightweight stream ciphers. Indeed, a stream cipher of 128 bit key is
required at least 256 bit internal state according to the conventional security crite-
rion. If we assume one bit register is implemented by a flip flop of 6 GE (Gate
Equivalent) area, we must allocate roughly 1.5 K GE only for the registers. This is
why there is almost no stream cipher in the literature having a hardware imple-
mentation less than 1 K GE. However, there are several block cipher designs with
hardware implementations less than 1 K GE such as Ktantan [9], PRINTCipher [39],
SLIM [2] and LBlock [7].

Recall that we have the tradeoff curve MD ¼ 2s for the Babbage-Golić attack

with the optimum point M ¼ N ¼ 2s=2 where s is the internal state size of a given
stream cipher. The online time complexity is also equal to the data complexity.

Then, we simply should consider the attack to be successful if 2s=2 < 22n=3. Therefore,
the internal state size must be at least 4n=3. An attacker may prefer to choose much
larger M on the curve MD ¼ 2s. For example, preparing a memory of M ¼ 2n, we

have D ¼ 2n=3 for the case s ¼ 4n=3. However, it is possible to restrict the total
number of the keystream bits produced per one key and force the users to change

the key before completing encrypting the amount of 2n=3 data.
Similarly, the optimum point of the tradeoff curve for the Biryukov-Shamir attack

is D2 ¼ M ¼ T ¼ 2s=2 whereM2D2T ¼ 22s. Then, the attack will be slower than the

default key recovery tradeoff attack if again 2s=2 ≥ 22n=3. Once more, we achieve the

8

Cryptography - Recent Advances and Future Developments



same security bound that the minimum size for the internal state must be 4n=3. If the
precomputation phase is required to be not faster than the exhaustive search, then the

amount of data encrypted per one key can be bounded above by 2n=3.
As a result, the tradeoff attacks aiming at the internal state recovery should be

compared to the default tradeoff key recovery attack. Then, it is possible to loosen
the restriction on the state size from 2n to 4n=3. This new criterion can enable novel
designs of ultra-lightweight stream ciphers. However, stream ciphers with short
internal states may prone to several other attacks. The attacks on Plantlet and
Sprout are the examples [20–26, 37, 38]. Therefore, it seems to be a fruitful chal-
lenge for the cryptography community to design secure stream ciphers having quite
short internal states. On the other hand, the real world applications such as IoT
devices, RFID tags or wireless sensors require ultra-lightweight stream ciphers for
confidentially.

6. Conclusions

We briefly introduce the tradeoff attacks on symmetric ciphers and initiate
hopefully a fruitful discussion about how to assess the degree of precautions or
countermeasure to be taken against these attacks.

The tradeoff attacks targeting at recovering one of the internal states producing
a given keystream sequence are compared to the exhaustive search attack on the
corresponding key used. However, a stream cipher key can be recovered much
faster thorough the default tradeoff attack. Therefore, the internal state recovery
tradeoff attacks should be compared to the default key recovery tradeoff attack. In
this case, it is possible to loosen the bound for the countermeasure taken against
state recovery tradeoff attacks.

The internal state size is supposed to be at least twice as large as the key size if
the security threshold for tradeoff attacks is taken as the complexity of the exhaus-
tive search. This is indeed a well known and worldwide adopted security criterion.
We argue that it is indeed not necessary to allocate such large internal state just for
the resistance against tradeoff attacks. The internal state size is enough to be at least
4n=3-bits particularly for the lightweight applications where n is the key length.
Besides, there are several other cyrptanalytic techniques for internal state recovery
that must be taken into account. It is an open problem how to design secure stream
ciphers with short internal states. Such ciphers must be secure against other types of
attacks such as divide-and-conquer attacks, guess and determine attacks or correla-
tion attacks. It is interesting to study this generic problem.

We believe that it is a challenging task to design small stream ciphers and the
industry requires such ciphers to use in lightweight applications such as IoT devices,
wireless sensors or RFID tags.
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