1,313 research outputs found

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator

    Synthesizing Functional Reactive Programs

    Get PDF
    Functional Reactive Programming (FRP) is a paradigm that has simplified the construction of reactive programs. There are many libraries that implement incarnations of FRP, using abstractions such as Applicative, Monads, and Arrows. However, finding a good control flow, that correctly manages state and switches behaviors at the right times, still poses a major challenge to developers. An attractive alternative is specifying the behavior instead of programming it, as made possible by the recently developed logic: Temporal Stream Logic (TSL). However, it has not been explored so far how Control Flow Models (CFMs), as synthesized from TSL specifications, can be turned into executable code that is compatible with libraries building on FRP. We bridge this gap, by showing that CFMs are indeed a suitable formalism to be turned into Applicative, Monadic, and Arrowized FRP. We demonstrate the effectiveness of our translations on a real-world kitchen timer application, which we translate to a desktop application using the Arrowized FRP library Yampa, a web application using the Monadic threepenny-gui library, and to hardware using the Applicative hardware description language ClaSH.Comment: arXiv admin note: text overlap with arXiv:1712.0024

    Free Applicative Functors

    Full text link
    Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when the structure of a computation is fixed a priori. That makes it possible to perform certain kinds of static analysis on applicative values. We define a notion of free applicative functor, prove that it satisfies the appropriate laws, and that the construction is left adjoint to a suitable forgetful functor. We show how free applicative functors can be used to implement embedded DSLs which can be statically analysed.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Stream Fusion, to Completeness

    Full text link
    Stream processing is mainstream (again): Widely-used stream libraries are now available for virtually all modern OO and functional languages, from Java to C# to Scala to OCaml to Haskell. Yet expressivity and performance are still lacking. For instance, the popular, well-optimized Java 8 streams do not support the zip operator and are still an order of magnitude slower than hand-written loops. We present the first approach that represents the full generality of stream processing and eliminates overheads, via the use of staging. It is based on an unusually rich semantic model of stream interaction. We support any combination of zipping, nesting (or flat-mapping), sub-ranging, filtering, mapping-of finite or infinite streams. Our model captures idiosyncrasies that a programmer uses in optimizing stream pipelines, such as rate differences and the choice of a "for" vs. "while" loops. Our approach delivers hand-written-like code, but automatically. It explicitly avoids the reliance on black-box optimizers and sufficiently-smart compilers, offering highest, guaranteed and portable performance. Our approach relies on high-level concepts that are then readily mapped into an implementation. Accordingly, we have two distinct implementations: an OCaml stream library, staged via MetaOCaml, and a Scala library for the JVM, staged via LMS. In both cases, we derive libraries richer and simultaneously many tens of times faster than past work. We greatly exceed in performance the standard stream libraries available in Java, Scala and OCaml, including the well-optimized Java 8 streams

    Typing rule-based transformations over topological collections

    Get PDF
    Pattern-matching programming is an example of a rule-based programming style developed in functional languages. This programming style is intensively used in dialects of ML but is restricted to algebraic data-types. This restriction limits the field of application. However, as shown by Giavitto and Michel at RULE'02, case-based function definitions can be extended to more general data structures called topological collections. We show in this paper that this extension retains the benefits of the typed discipline of the functional languages. More precisely, we show that topological collections and the rule-based definition of functions associated with them fit in a polytypic extension of mini-ML where type inference is still possible
    • …
    corecore