4,466 research outputs found

    Distributed photonic instrumentation for smart grids

    Get PDF
    Photonic sensor networks possess the unique potential to provide the instrumentation infrastructure required in future smart grids by simultaneously addressing the issues of metrology and communications. In contrast to established optical CT/VT technology, recent developments at the University of Strathclyde in distributed point sensors for electrical and mechanical parameters demonstrate an enormous potential for realizing novel and effective monitoring and protection strategies for intelligent electrical networks and systems. In this paper, we review this technology and its capabilities, and describe recent work in power system monitoring and protection using hybrid electro-optical sensors. We show that wide-area visibility of multiple electrical and mechanical parameters from a single central location may be achieved using this technology, and discuss the implications for smart grid instrumentation

    Efficient large-scale multiplexing of fiber Bragg grating and fiber Fabry-Perot sensors for structural health monitoring applications

    Get PDF
    Fiber Bragg gratings have been demonstrated as a versatile sensor for structural health monitoring. We present an efficient and cost effective multiplexing method for fiber Bragg grating and fiber Fabry-Perot sensors based on a broadband mode-locked fiber laser source and interferometric interrogation. The broadband, pulsed laser source permits time and wavelength division multiplexing to be employed to achieve very high sensor counts. Interferometric interrogation also permits high strain resolutions over large frequency ranges to be achieved. The proposed system has the capability to interrogate several hundred fiber Bragg gratings or fiber Fabry-Perot sensors on a single fiber, whilst achieving sub-microstrain resolution over bandwidths greater than 100 kHz. Strain resolutions of 30n epsilon/Hz(1/2) and 2 n epsilon/Hz(1/2) are demonstrated with the fiber Bragg grating and fiber Fabry-Perot sensor respectively. The fiber Fabry-Perot sensor provides an increase in the strain resolution over the fiber Bragg grating sensor of greater than a factor of 10. The fiber Bragg gratings are low reflectivity and could be fabricated during the fiber draw process providing a cost effective method for array fabrication. This system would find applications in several health monitoring applications where large sensor counts are necessary, in particular acoustic emission

    Flexible protection architectures using distributed optical sensors

    Get PDF
    In this paper we describe recent developments in flexible protection schemes that make use of passive fibre Bragg grating (FBG) based transducers for the distributed measurement of voltage and current. The technology underpinning the passive optical approach is described in detail, and both the present development and the future potential of the approach are discussed. In co-operation with Toshiba, the integration of the technique with an existing busbar protection relay is demonstrated, illustrating the flexibility offered by protection schemes that are based on the use of small, passive, multiplexable, dielectric transducers

    Optical fibre sensors - applications and potential

    Get PDF
    Fibre optic sensors have progressed considerably during the past few years and are now establishing their potential as very real contenders in the environmental, structural monitoring and industrial sensing areas. This paper will explore some examples of these emerging applications and analyse the benefits which optical fibre technology offers within these measurement sectors. We shall then continue to explore emerging prospects which offer new opportunities for future research and exploitation

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Efficient fiber Bragg grating and fiber Fabry-Pe'rot sensor multiplexing scheme using a broadband pulsed mode-locked laser

    Get PDF
    A pulsed broadband mode-locked laser (MLL) combined with interferometric interrogation is shown to yield an efficient means of multiplexing a large number of fiber Bragg grating (FBG) or fiber Fabry-Perot (FFP) strain sensors with high performance. System configurations utilizing time division multiplexing (TDM) permit high resolution, accuracy, and bandwidth strain measurements along with high sensor densities. Strain resolutions of 23-60 n epsilon/Hz(1/2) at frequencies up to 800 Hz (expandable to 139 kHz) and a differential strain-measurement accuracy of +/- 1 mu epsilon are demonstrated. Interrogation of a low-finesse FFP sensor is also demonstrated, from which a strain resolution of 2 n epsilon/Hz(1/2) and strain-measurement accuracy of +/- 31 n epsilon are achieved. The system has the capability of interrogating well in excess of 50 sensors per fiber depending on crosstalk requirements. A discussion on sensor spacing, bandwidth, dynamic range, and measurement accuracy is also given

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry
    corecore