2,079 research outputs found

    Applications of Discrepancy Theory in Multiobjective Approximation

    Get PDF
    We apply a multi-color extension of the Beck-Fiala theorem to show that the multiobjective maximum traveling salesman problem is randomized 1/2-approximable on directed graphs and randomized 2/3-approximable on undirected graphs. Using the same technique we show that the multiobjective maximum satisfiablilty problem is 1/2-approximable

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    SF-SFD: Stochastic Optimization of Fourier Coefficients to Generate Space-Filling Designs

    Full text link
    Due to the curse of dimensionality, it is often prohibitively expensive to generate deterministic space-filling designs. On the other hand, when using na{\"i}ve uniform random sampling to generate designs cheaply, design points tend to concentrate in a small region of the design space. Although, it is preferable in these cases to utilize quasi-random techniques such as Sobol sequences and Latin hypercube designs over uniform random sampling in many settings, these methods have their own caveats especially in high-dimensional spaces. In this paper, we propose a technique that addresses the fundamental issue of measure concentration by updating high-dimensional distribution functions to produce better space-filling designs. Then, we show that our technique can outperform Latin hypercube sampling and Sobol sequences by the discrepancy metric while generating moderately-sized space-filling samples for high-dimensional problems

    The Kalai-Smorodinski solution for many-objective Bayesian optimization

    Get PDF
    An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame
    corecore