67,450 research outputs found

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405

    Efficient Opportunistic Sensing using Mobile Collaborative Platform MOSDEN

    Get PDF
    Mobile devices are rapidly becoming the primary computing device in people's lives. Application delivery platforms like Google Play, Apple App Store have transformed mobile phones into intelligent computing devices by the means of applications that can be downloaded and installed instantly. Many of these applications take advantage of the plethora of sensors installed on the mobile device to deliver enhanced user experience. The sensors on the smartphone provide the opportunity to develop innovative mobile opportunistic sensing applications in many sectors including healthcare, environmental monitoring and transportation. In this paper, we present a collaborative mobile sensing framework namely Mobile Sensor Data EngiNe (MOSDEN) that can operate on smartphones capturing and sharing sensed data between multiple distributed applications and users. MOSDEN follows a component-based design philosophy promoting reuse for easy and quick opportunistic sensing application deployments. MOSDEN separates the application-specific processing from the sensing, storing and sharing. MOSDEN is scalable and requires minimal development effort from the application developer. We have implemented our framework on Android-based mobile platforms and evaluate its performance to validate the feasibility and efficiency of MOSDEN to operate collaboratively in mobile opportunistic sensing applications. Experimental outcomes and lessons learnt conclude the paper

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar
    • …
    corecore