4,894 research outputs found

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

    Get PDF
    Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen steering plays a key role in one-sided device-independent quantum key distribution (1sDI-QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 km and 3.5 km of optical fiber transmission respectively. We also engage in detailed modelling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CVQKD systems in a significantly more secure setting.Comment: Addition of experimental results and (several) new author

    Quantum Tomography

    Get PDF
    This is the draft version of a review paper which is going to appear in "Advances in Imaging and Electron Physics"Comment: To appear in "Advances in Imaging and Electron Physics". Some figs with low resolutio

    Theory of phaselock techniques as applied to aerospace transponders

    Get PDF
    Phaselock techniques as applied to aerospace transponder

    Quantum Information Protocols with Gaussian States of Light

    Get PDF
    • …
    corecore