597 research outputs found

    Compressed Sensing And Joint Acquisition Techniques In Mri

    Get PDF
    The relatively long scan times in Magnetic Resonance Imaging (MRI) limits some clinical applications and the ability to collect more information in a reasonable period of time. Practically, 3D imaging requires longer acquisitions which can lead to a reduction in image quality due to motion artifacts, patient discomfort, increased costs to the healthcare system and loss of profit to the imaging center. The emphasis in reducing scan time has been to a large degree through using limited k-space data acquisition and special reconstruction techniques. Among these approaches are data extrapolation methods such as constrained reconstruction techniques, data interpolation methods such as parallel imaging, and more recently another technique known as Compressed Sensing (CS). In order to recover the image components from far fewer measurements, CS exploits the compressible nature of MR images by imposing randomness in k-space undersampling schemes. In this work, we explore some intuitive examples of CS reconstruction leading to a primitive algorithm for CS MR imaging. Then, we demonstrate the application of this algorithm to MR angiography (MRA) with the goal of reducing the scan time. Our results showed reconstructions with comparable results to the fully sampled MRA images, providing up to three times faster image acquisition via CS. The CS performance in recovery of the vessels in MRA, showed slightly shrinkage of both the width of and amplitude of the vessels in 20% undersampling scheme. The spatial location of the vessels however remained intact during CS reconstruction. Another direction we pursue is the introduction of joint acquisition for accelerated multi data point MR imaging such as multi echo or dynamic imaging. Keyhole imaging and view sharing are two techniques for accelerating dynamic acquisitions, where some k-space data is shared between neighboring acquisitions. In this work, we combine the concept of CS random sampling with keyhole imaging and view sharing techniques, in order to improve the performance of each method by itself and reduce the scan time. Finally, we demonstrate the application of this new method in multi-echo spin echo (MSE) T2 mapping and compare the results with conventional methods. Our proposed technique can potentially provide up to 2.7 times faster image acquisition. The percentage difference error maps created from T2 maps generated from images with joint acquisition and fully sampled images, have a histogram with a 5-95 percentile of less than 5% error. This technique can potentially be applied to other dynamic imaging acquisitions such as multi flip angle T1 mapping or time resolved contrast enhanced MRA

    Doctor of Philosophy

    Get PDF
    dissertationThe gold standard for evaluation of arterial disease using MR continues to be contrast-enhanced MR angiography (MRA) with gadolinium-based contrast agents (Gd-MRA). There has been a recent resurgence in interest in methods that do not rely on gadolinium for enhancement of blood vessels due to associations Gd-MRA has with nephrogenic systemic fibrosis (NSF) in patients with impaired renal function. The risk due to NSF has been shown to be minimized when selecting the appropriate contrast type and dose. Even though the risk of NSF has been shown to be minimized, demand for noncontrast MRA has continued to rise to reduce examination cost, and improve patient comfort and ability to repeat scans. Several methods have been proposed and used to perform angiography of the aorta and peripheral arteries without the use of gadolinium. These techniques have had limitations in transmit radiofrequency field (B1+) inhomogeneities, acquisition time, and specific hardware requirements, which have stunted the utility of noncontrast enhanced MRA. In this work feasibility of noncontrast (NC) MRA at 3T of the femoral arteries using dielectric padding, and using 3D radial stack of stars and compressed sensing to accelerate acquisitions in the abdomen and thorax were tested. Imaging was performed on 13 subjects in the pelvis and thighs using high permittivity padding, and 11 in the abdomen and 19 in the thorax using 3D radial stack of stars with tiny golden angle using gold standards or previously published techniques. Qualitative scores for each study were determined by radiologists who were blinded to acquisition type. Vessel conspicuity in the thigh and pelvis showed significant increase when high permittivity padding was used in the acquisition. No significant difference in image quality was observed in the abdomen and thorax when using undersampling, except for the descending aorta in thoracic imaging. All image quality scores were determined to be of diagnostic quality. In this work it is shown that NC-MRA can be improved through the use of high permittivity dielectric padding and acquisition time can be decreased through the use of 3D radial stack of stars acquisitions

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Simultaneous use of Individual and Joint Regularization Terms in Compressive Sensing: Joint Reconstruction of Multi-Channel Multi-Contrast MRI Acquisitions

    Get PDF
    Purpose: A time-efficient strategy to acquire high-quality multi-contrast images is to reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause leakage of uncommon features among contrasts, compromising diagnostic utility. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Theory: Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. Methods: The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. Results: The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms. Conclusion: The proposed compressive sensing method performs fast reconstruction of multi-channel multi-contrast MRI data with improved image quality. It offers reliability against feature leakage in joint reconstructions, thereby holding great promise for clinical use.Comment: 13 pages, 13 figures. Submitted for possible publicatio

    Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting

    Full text link
    High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS). Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. Data is acquired with a 3D Radial Phase Encoding (RPE) trajectory and an iterative reweighting scheme is used during image reconstruction to ensure fast convergence and high image quality. In our in-vivo cardiac MRI experiments we show that the proposed method 3DShearCS has lower relative errors and higher structural similarity compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. In this paper, we further show that 3DShearCS provides improved depiction of cardiac anatomy (measured by assessing the sharpness of coronary arteries) and two clinical experts qualitatively analyzed the image quality

    Accelerating cardiovascular MRI

    Get PDF

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) représentent la principale cause de décès aux États-Unis et en Europe et génèrent des coûts de santé de plusieurs centaines de milliards de dollars par an. Les méthodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la méthode de référence pour le diagnostic de la maladie coronarienne, une catégorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvénients son caractère invasif, son coût, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par résonance magnétique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours à des agents de contraste exogènes et bénéficie d'une résolution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les échelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau développement de notre laboratoire qui bénéficie des progrès réalisés au cours des trois dernières décennies et tente de remédier aux inconvénients des approches précédentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complètement « self-gated » , c’est-à-dire capable de détecter les mouvements cardiaques et respiratoires, forte d’une implémentation simplifiée, d’une plus grande facilité d'utilisation, d’une dépendance réduite vis-à-vis de l'opérateur et d’une détection automatique des mouvements spécifiques du patient. L'imagerie « free- running » augmente la quantité d'informations à disposition du clinicien et est suffisamment flexible pour être appliquée à différents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a découplé l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque à la classe plus large des techniques basées sur l'état stationnaire utilisant des séquences de précession libre équilibrée en état stationnaire (bSSFP), qui se distinguent par leur simplicité d’utilisation et leur rapport signal sur bruit élevé. Le thème de cette thèse est donc l'application des techniques basées sur l'état stationnaire à l'IRM cardiaque. La première partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publié utilise une acquisition bSSFP interrompue où des modules de saturation de graisse (CHESS) sont insérés de façon à fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artères coronaires, et sont suivis par des impulsions en rampe pour réduire les artefacts résultant du retour à l'état stable. Cette acquisition interrompue souffre cependant d'un état d'équilibre interrompu, d'une efficacité temporelle réduite et d'un débit d'absorption spécifique (DAS) plus élevé. En utilisant les nouvelles impulsions d'excitation radiofréquence (RF) binomiales hors -résonance insensibles aux lipides (LIBRE) développées dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporées dans une séquence bSSFP ininterrompue et « free-running » peuvent être utilisées avec succès pour l'IRM cardiaque 5D à 1,5 T. L'approche « free-running LIBRE » permet de réduire le temps d'acquisition et le DAS par rapport à l'approche interrompue précédente, tout en maintenant la perceptibilité des artères coronariennes. En outre, il s'agit de la première utilisation réussie d'une impulsion d'excitation RF supprimant la graisse dans une séquence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui démontre le potentiel d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque et résout le problème de la disponibilité de la séquence en clinique. Inspirée par la faisabilité d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque, la deuxième partie étudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamétrique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP à cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggère que cette méthode pourrait être facilement intégrée au cadre « free - running » sans interruption de l’état d'équilibre. Après calibration de l'acquisition, nous explorons la possibilité d'accélérer l'acquisition statique de PLANET pour l'appliquer au cœur. Nous démontrons que l'exactitude et la précision de PLANET peuvent être maintenues pour une accélération double avec une trajectoire 3D cartésienne en spirale, ce qui suggère que PLANET est réalisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schéma de reconstruction, l'amélioration de l'estimation de la sensibilité de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en œuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thèse présente deux approches utilisant des techniques de modulation de fréquence radio en état stationnaire pour l'IRM cardiaque. La première approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors résonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une séquence bSSFP à cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux méthodes permettent de répondre au défi posé par la disponibilité des séquences en IRM cardiaque en montrant qu'une séquence commune et simple comme la bSSFP peut être utilisée pour l'acquisition, tandis que les étapes de compensation du mouvement et de reconstruction peuvent être traitées hors ligne. Ainsi, ces méthodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque
    corecore