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1      CHAPTER 1: INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. Compared with 

Computed Tomography (CT) and x-ray imaging, MRI does not utilize ionizing radiation. In 

addition there are multiple contrast mechanisms available through MRI. The MRI signal is 

sensitive to a variety of parameters including water content, oxygenation levels of the blood, 

blood flow, diffusion, temperature and concentration of metabolites, to name a few. Therefore 

MRI is a perfect medium for imaging soft tissue and specifically tissue in the human body.  

The MRI technology has been improved rapidly both in hardware and software design 

and development since its invention more than 30 years ago. One of the most encountered 

challenges of MRI for being employed in clinical settings has been its relatively long scan time 

compared with CT imaging especially for high resolution three dimensional imaging. Most of the 

effort for improving the scan time in MRI has been with hardware improvements and developing 

faster imaging pulse sequences with efficient data acquisition strategies. 

One approach for an effective acceleration scheme aims at collecting less data in favor of 

speed while retaining the quality of the images. This is possible because the MR signal is 

redundant in its nature so the underlying information may be extracted from fewer data 

measurements.  One of the most successful efforts in this direction has been accomplished by 

parallel imaging techniques utilizing the spatial information provided by multiple receiver coils. 

Alternate approaches exist on the reconstruction side, and favor the use of central k-space to 

improve resolution and yet keep the acquisition time short [1-6].  
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Another relatively new concept is known as Compressed Sensing (CS) which exploits the 

compressibility of the MR images in order to reduce the number of measurements necessary for 

reconstructing an image. CS suggests that randomly collecting highly undersampled data points 

at the outer k-space can significantly ease the process of extrapolating the missing data in k-

space. The nature of this theory is very well compatible with the physics of MR imaging.  

In this thesis I explore the theory of compressed sensing and demonstrate its application 

and implementation in MR angiography. In addition I explore a new technique to perform MR 

dynamic imaging by employing a combination of keyhole imaging, view-sharing and CS sampling 

techniques which we refer to as joint data acquisition and reconstruction. 

1.1 Thesis Outline 

In Chapter 2, the basics of MR imaging and the physical theories will be reviewed and 

discussed. I introduce just the tools and concepts necessary for understanding the MR methods 

used including MR physics, signal generation, signal acquisition, spatial encoding, k-space 

coverage and image reconstruction. 

In Chapter 3, I revisit the time constraints of MR imaging and introduce the parameters 

affecting the imaging speed. Then, I briefly introduce the general means to reduce the scan time. 

In Chapter 4, I delve into the concept of compressed sensing and its application to MR 

angiography. I also discuss the limitations and the artifacts associated with the CS 

implementation. 
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In Chapter 5, I introduce the idea of joint acquisition and reconstruction, review the basics 

of keyhole imaging and view-sharing technique and show how they can be combined with the 

idea of CS random sampling.  I show the application in multi-echo spin echo dynamic imaging 

with the purpose of rapid T2 parameter mapping. 

  Finally in Chapter 6, I provide a summary of this work along with some future directions. 
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2 CHAPTER 2: PRINCIPLES OF MAGNETIC RESONANCE IMAGING 

 

2.1  History 

The history of Nuclear Magnetic Resonance (NMR) started with the discovery of the nature 

of the proton. Stern and Gerlach back in the 1920s set the foundation for Rabi and coworkers to 

study the interaction of protons with a magnetic field. Later on in 1946, Bloch and Purcell were 

able to extend the previous concepts to a measurement of an effect of the precession of the 

spins around a magnetic field [7]. The behavior of an individual spin can be understood and 

described via quantum mechanics.. However, the macroscopic behavior of an isochromat (large 

number) of spins can be described with classical physics. A brief review of key concepts in MRI 

required in this thesis is provided below. 

2.2  Polarization 

Any nuclei with an odd number of protons and neutrons possess a property called spin. 

This is a quantum mechanical phenomenon which can simply be visualized by a rotational 

motion of the spin about its own axes. Since the proton of the atomic nuclei is charged, this 

rotational motion will create a magnetic moment.  

 

Figure 2.1, A single nuclei creates a magnetic moment (like a bar magnet) due to its rotational motion about its own 
axes. 
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In an environment with no strong magnetic field present, this magnetic moment is 

randomly oriented. However when protons are positioned in an external magnetic field, the 

spins will align in one of the two parallel or anti-parallel positions. The interaction of the 

dominant nucleus in MRI, the proton in hydrogen, with an external magnetic field,        , results in 

the precession of the proton spin about the field direction (Figure 2.2). This precessional angular 

frequency which is also known as the Larmor frequency is given by: 

         ( 2-1 ) 

where   is a constant called the gyromagnetic ratio. In water, the hydrogen proton has a   value 

of approximately          rad/s/Tesla or 42.58 MHz/T.  

 

Figure 2.2, (a) The alignment of the spins in parallel or anti-parallel orientations when positioned in a strong 
magnetic field (B0). (b) The precession of the proton spins about the external magnetic field (B0). Image is taken 
from (http://www.mikepuddephat.com/Page/1603/Principles-of-magnetic-resonance-imaging) 

  

2.3  rf excitation, resonance and relaxation 

Now considering the spins aligned along the      in the z direction, if a radiofrequency (rf) 

magnetic field (    ) is applied, the spins will be tipped away from the external field direction.  In 

order for the B1 field (also known as the transmit field) to tip the magnetization away, it must:  

1- have components in the transverse plane, 2- its frequency must match the Larmor frequency 



6 

 

of the nuclei of interest. This frequency usually lies in the rf range in conventional high field MRI 

machines. The second condition is also known as being on resonance, where the B1 field is 

maximally synchronized to tip the spins away from the         direction.  

The magnetization produced as a result of applying the rf pulse is often broken into two 

key components: the longitudinal component (     ) along the main magnetic field direction (       ) 

and the transverse component (               .  

The extent of tipping is determined by the length of time the rf pulse is on and the 

amplitude of the pulse. The angle through which the magnetization is rotated is referred to as 

the Flip Angle (FA). The rf field is stopped after the magnetization is tipped by the desired 

amount. 

The behavior of the tipped magnetization will depend on the intrinsic energy exchange as 

a result of the interaction between the protons themselves as well as with surrounding micro 

environment. These effects are known as “spin-pin” and “spin-lattice” interactions respectively, 

which affect the magnetization evolution over time. They are also known as relaxation effects. 

The differential equation of magnetization is described by the Bloch equation: 

 
     

  
              

 

  
          

 

  
      (2-2)   

where   ,    and       are the equilibrium, longitudinal and transverse components of the 

magnetization respectively and  , T1 and T2 are constants which are specific to the type of 

tissue. T1 and T2 are also known as the intrinsic relaxation factors of the tissue or material of 

interest. 
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Figure 2.3, The effect of a synchronized rf B1 field on the bulk magnetization  (M) which has been polarized in the 
external magnetic field B0. M is tipped away from its equilibrium orientation to the transverse plane (in this case a 
90 degree flip angle). Image taken from http://www.mikepuddephat.com/Page/1603/Principles-of-magnetic-
resonance-imaging) 

 

2.4 Spatial encoding and gradients 

The signal from the sample inside the MRI machine has to be spatially encoded in order to 

create an image. This can be done by applying what is known as gradient fields or gradients. 

Gradients are additional longitudinal magnetic fields which vary linearly along space and 

therefore change the resulting magnetic field of each point in space. By doing so each point in 

space (  ) will have a unique precessional frequency associated with it (equation (2-3)). This 

difference can be used in order to encode the spatial information in the MR signal. 

             

               ( 2-3 ) 
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Figure 2.4, A schematic of a gradient field and how it varies along space. The resulting longitudinal magnetic field in 
each point in space will have a unique and slightly different strength. 

 

The gradient fields are shown with   ,    and   , which combined can encode a three 

dimensional space. The gradient along   direction is applied during the sampling process and is 

referred to as frequency encoding gradient. The gradients along other two directions are turned 

on repeatedly only for a specific interval and therefore their effect on the MR signal is 

represented as additional accumulated phase.  

2.5 Signal detection 

Once the magnetization has a transverse component, its precession about     direction 

can be detected with a receiver coil. According to the Faraday induction law, an electromagnetic 

force (emf) will be induced in a coil by a change in magnetic flux environment. The signal must go 

through demodulation in order to remove rapid signal oscillations caused by the    field. 

Assuming that there is no relaxation effects, the demodulated signal in the time-domain can be 

written as below [7]:   

                                ( 2-4 ) 

Where        is the effective spin density at spatial coordinates    which can be introduced as:  
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                  ( 2-5 ) 

where    is the Larmor frequency,    is the component of receive coil    field that lies in the 

transverse plane,   is introduced as a constant which includes the gain factors from the 

electronic detection system and        is simply the initial transverse magnetization or 

equilibrium magnetization. 

The accumulated phase term in equation (2-4) is a result of applied gradients for spatial 

encoding and can be written in radians: 

                      
 

 
 ( 2-6 ) 

The use of a gradient (  ) to establish a relation between the position of spins along some 

direction (  ) and their associated phase (       ) is referred to as the spatial encoding (or 

frequency/ phase encoding).  

Equation (2-6) shows the contribution of phase to the detected signal in an MRI 

experiment. Once the bulk magnetization is tipped to the transverse plane by applying an rf 

pulse, the T2 relaxation effect can be described as dephasing of the spins which leads to an 

exponential decay of the bulk transverse magnetization magnitude.  
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Figure 2.5, (a) the magnetization after a 90 degree rf excitation, precessing in the transverse plane (aka FID 
experiment).  The receiver coil can measure the induced signal from the magnetization. (b) The signal vs time 
recorded by the receiver coil. The decay envelope of the signal is due to T2 (T2*) relaxation effect. Image taken from 
http://www.mikepuddephat.com/Page/1603/Principles-of-magnetic-resonance-imaging) 
 

 

2.6  k-space 

In the early days of the development of MRI, it was recognized that the time-domain signal 

could be manipulated by following trajectories, driven by the gradients, that evolve in a 2D or 3D 

space [8]. This simple but critical realization is the cornerstone of MR imaging which led to the 

paper by Nobel Prize winners Paul Lauterbur [9] and Peter Mansfield [10].  

The role of the spatial encoding gradients is to map the MR time signal to a different space 

which is known as k-space and is defined as:  

       
 

  
          
 

 
 ( 2-7 ) 

k-space has units of inverse distance (usually 1/cm – a spatial frequency). With this definition the 

MR signal mentioned in equation (2-4) can be re-written as: 

                      
        ( 2-8 ) 
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Using the inverse Fourier transform property we can show that the effective spin density can be 

calculated as: 

                     
      ( 2-9 ) 

This general formulation can be applied towards 1D, 2D or 3D imaging as conforms, noting that 

the time-domain and k-space share the same dimensionality. For example a 2D experiment 

would be possible in the presence of a set of two orthogonal gradients and the signal may be 

written as a 2D Fourier transform called 2D imaging equation [7]: 

                                     ( 2-10 ) 

The two implicitly time-dependent components of        are related to the respective integrals 

over the gradient components and are known as frequency encoding and phase encoding 

directions respectively: 

       
 

  
          

     
 

 
,              

 

  
          

     
 

 
 ( 2-11 ) 

The k-space is usually shown as a matrix with the same dimensions of the image. The frequency 

encoding direction is shown with straight lines which indicate its continuous sampling process. 

Points are often shown on each line and represent individual samples of the MR signal.  Figure 

2.6 shows a common schematic of a two dimensional k-space. 



12 

 

 

Figure 2.6, A schematic of a two dimensional k-space. Kx is the frequency encoding direction, ky is the phase 
encoding direction.     and     are the sampling intervals or encoding steps. 

The center of k-space holds the low spatial frequency information and as we get further 

from the center of k-space it will become higher spatial frequency information. This simply 

means that most of the image contrast information is stored at the center of k-space while the 

outer k-space adds the detail information of the image. The center of k-space is of utmost 

importance in MR imaging and reconstruction. 

The k-space concept can be extended for 3D imaging with via employing the additional 

gradient in the z direction also known as partition encoding gradient   . This gradient will control 

sampling through the third direction in k-space and encodes the spatial information through the 

third dimension. Now we have a set of 2D k-spaces which combined will create the entire 3D 

dataset. The 2D planes in k-space are separated from each other by a fixed distance (   ). 
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2.7 Sampling 

The k-space trajectory is the path traced out by        which is driven by alternately turning 

on the gradients in different directions. Although k-space trajectories may traverse a continuous 

path in k-space, the signal may only be sampled in a discrete fashion. Sampling is the process of 

converting a continuous signal into a countable sequence of the same quality. 

The MR signal is sampled with measurements at finite time steps    during the continuous 

application of the read encoding gradient   . The associated intervals in    (or readout) 

direction can be written as: 

    
 

  
     ( 2-12 ) 

where    is the frequency-encoding gradient and    is the sampling time interval. The sampling 

intervals in the other k-space directions known as phase encoding and partition encoding steps 

(            , can also be defined in the same fashion: 

                         
 

  
                   

 

  
           ( 2-13 ) 

where    and    are the duration of application of the gradients. 

For proper image reconstruction from k-space, some sampling requirements must be 

met. In other words, we need to collect sufficient number of signal samples to cover the k-space. 

This requirement is describes in the Nyquist-Shannon sampling theorem. 

2.7.1 Nyquist-Shannon sampling theorem 

Nyquist-Shannon sampling theorem (more commonly referred to as Nyquist theorem), 

describes a fundamental principle in the field of signal processing and information theory. This 

theorem states that any band-limited signal can be reconstructed perfectly from a finite number 
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of samples taken uniformly at an interval not exceeding the reciprocal of twice the signal 

bandwidth. More specifically assuming that the signal      is band-limited to     , the Nyquist 

sampling theorem requires that: 

    
 

     
                                         

 

  
       ( 2-14) 

In other words, the largest sampling interval permissible for perfectly reconstructing the signal is 

   
 

     
, also known as the Nyquist interval. Correspondingly, the Nyquist frequency is 

         which is the minimum sampling rate required for exact recovery of the signal [11]. 

If        are the sampled values taken from the signal      with intervals of    satisfying the 

Nyquist criterion, then the signal      can be reconstructed using the following interpolation 

formula: 

                              
   ( 2-15 ) 

 

Figure 2.7, Illustration showing recovery of a continuous signal from its samples by a summation of weighted sinc 
functions. Image taken from [11]. 
 

2.7.2 k-space sampling requirements 

Satisfying the sampling requirements of k-space can be seen as solving a 

multidimensional problem. In practice, however, k-space sampling is usually resolved in each 
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direction individually in order to reduce the problem dimensionality to a 1-D sampling problem. 

Once the sampling criterion is met, it guarantees perfect recovery of the underlying continuous 

k-space signal. Here we discuss the adoption of this conventional treatment to determine the 

sampling requirement of the popular 2D rectilinear (Cartesian) imaging scheme. The same 

treatment can be extended to higher dimensions.  

Assume that the object being imaged is bounded in two directions with    and    as 

shown in Figure 2.8. According to the Nyquist sampling theorem the sampling intervals (or 

encoding steps) in each direction should follow: 

     
 

  
                        

 

  
      ( 2-16 ) 

Substituting equation (2-12) and (2-13) into equation (2-16), we can derive the final 

requirements for MR k-space sampling based on the imaging experiment: 

    
  

       
         and            

  

     
 ( 2-17 ) 

 

Figure 2.8, Rectilinear (or Cartesian) imaging scheme. (a) Object bounded by rectangle of widths    and   . (b) 

Corresponding k-space samples. Reproduced from [11]. 
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2.7.3 Field of View (FOV) 

Field of view (FOV) is defined as the spatial encoding area of the image which can be 

multidimensional. Since the object being imaged has a limited size, the inverse Fourier transform 

of a finitely sampled signal from that object yields an infinite set of exact copies of its physical 

spin density (which is our image), separated from each other by FOV. One can show using the 

Fourier series properties [7] that the uniform spacing between data points in k-space (  ), is  

equal to      . 

 

  
     ( 2-18 ) 

If the FOV is designed to be smaller than the object size, multiple copies of the resulting imaging 

experiment will be folded over each other. This phenomenon is known as aliasing. 

2.8  Aliasing  

According to the Nyquist sampling theorem, the continuous k-space signal can be 

recovered perfectly from its finite samples if the sampling criterion is met. If these conditions are 

violated, perfect reconstruction will not be possible .The resulting errors in the reconstructed 

image are known as aliasing artifacts. The extent and the shape of aliasing are dependent on 

how the samples are taken from the continuous signal and how much the conditions are 

violated. 

We know that the spatial information of the image is encoded in the MRI signal via 

frequency and phase encoding by varying the processional frequency of spins along the object 

using gradients. On the other hand, the Nyquist criterion requires the sampling frequency to be 

greater than twice the signal bandwidth (           ). If this condition is violated, any signal 
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with a frequency component outside this bandwidth will fold over. This artifact is well known as 

aliasing. 

Usually when aliasing happens, it’s not possible to remove it from the reconstructed 

images. However there are methods for avoiding the aliasing artifact using an essential feature 

of MRI receiver coils by applying a band-limiting hardware filter (anti-alias filter) on the signal 

prior to sampling. However this method cannot prevent aliasing in phase encoding directions 

and is only applicable to the frequency encoding direction. Different practical anti-aliasing 

methods in other encoding directions are discussed in [12]. 

We can redefine the Nyquist sampling criterion for MR signal acquisition as follows: the 

MR signal must be sampled densely enough that the inverse of the sampling step in k-space 

(  ), is larger than the object size (W). In other words, if the FOV in any direction is chosen to be 

smaller than the object size, the information from any point in the object outside the FOV will 

wrap back into the reconstructed image.  

                                        
 

 
 ( 2-19 ) 

An illustrative example of this phenomenon can be seen in Figure 2.9: 
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Figure 2.9, Illustration showing the k-space undersampling effect in the reconstructed object, known as aliasing. 
Nyquist criterion is met in (a) and violated in (b). Reproduced from [11]. 

 

2.9  Spatial resolution and Gibbs ringing 

By definition, the spatial resolution of any imaging system is the smallest separation    of 

two point sources necessary for them to remain resolvable in the resultant image [11].  The 

spatial uniform steps in the image-domain, called pixels or voxels, determine the visual quality of 

the image. Mathematically the relationship between the object and the resulting image in a 

perfect imaging system can be described as follows: 

                  ( 2-20 ) 

where       represents the object at location   ,       is the image corresponding to the object at 

location   ,    represents the convolution operator and       is the point spread function (PSF). 

The image from equation (2-20), can be an exact representation of the object only if the PSF is a 

  funtion. The more the PSF deviates from the   function, the image will be blurred.  
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Here we show how the PSF of Fourier reconstructions, which is the case in MR imaging, 

can be calculated. Since the collected k-space signal is discretized, applying a discrete inverse 

Fourier transform in order to create the image will also map out to a discrete set of 

reconstructed spin densities. The number of k-space samples however is always finitely defined. 

On the other hand it is not possible to infinitely collect the MR signal in k-space. This is 

equivalent to truncating the true k-space which can also be described as filtering the signal 

(    ) by a rect function. The filter is given by: 

            
  

 

 
  

 
  ( 2-21 ) 

                  ( 2-23 ) 

where   is given by: 

      ( 2-25) 

where N is the number of encodings (or samples). 

According to the Fourier transform properties, the filtering process in k-space is 

equivalent to convolution in the image domain: 

                      

                                                                                       ( 2-26 ) 

where       is defined as the PSF of Fourier reconstruction which is the inverse Fourier 

transform of      : 

                                                                                      ( 2-27 ) 
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The effect of the phase term is often ignored because its effect is insignificant compared with 

that of the amplitude term. The effective width of the PSF function or the width of the rect 

function (     ) determines the extent of blurring in the resulting image. This blurring will 

lead to what we know as a lower resolution. The key point here is that the extent of k-space 

coverage in k-space (    ) has a direct relationship with the image spatial resolution.   

 

Figure 2.10, A plot of the amplitude term of the Fourier reconstruction PSF. 
 

A lower spatial resolution will cause an artifact known as partial volume effect which refers to 

the interference of the signal from two points in the object if their physical distance is smaller 

than the spatial resolution of the image. In this case the intensity of a single voxel in the image 

may represent a combination of the resulting signals from multiple points in the physical object. 

 Gibbs ringing 

By definition, Gibbs ringing accompanies finite Fourier series representation of functions 

with step discontinuities. Gibbs ringing arises as an oscillating overshoot and undershoot in the 

immediate neighborhood of any step discontinuity in the image. This is a result of convolving the 

sideway lobes of the Fourier PSF with the object. The overshot and undershoot does not 

disappear by increasing the truncation window (or increasing the number of Fourier samples). 
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Figure 2.11, The effect of increasing the number of harmonics in approximating a square wave function. (a) 5 
harmonics, (b) 25 harmonics and (c) 125 harmonics. It can be seen that the peak-to-peak difference of the 
overshoot and undershoot does not change. But they move closer to the discontinuity by increasing the number of 
harmonics. Image taken from Wikipedia. 

 

It can be shown mathematically [7] that for example by doubling the truncation window 

(N   2N), the peak-to-peak difference in the ringing is invariant. However the peaks of the 

overshoot and undershoot move half the distance closer to the discontinuity than before. This 

property leads to less apparent Gibbs ringing artifact in high-resolution MR images.  

Improving the resolution by increasing the size of the truncation window will reduce the 

appearance of Gibbs ringing artifact. The Gibbs ringing artifacts should be avoided especially if 

they mimic certain disease states. 

 

Figure 2.12, The phantom images from filtering a 320x320 matrix size acquisition with a fixed FOV. The 
reconstruction is from reducing the full window to (a) 64x64 window, (b) 100x100 window and (c) full window. The 
improved resolution, reduced blurring and reduced Gibbs ringing can be seen by increasing the window size.  
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3 CHAPTER 3: TIME SAVING STRATEGIES 

The total scan time (  ) for a given sequence is driven by a number of parameters. In order 

to reduce the scan time we need to discuss each of these parameters to see what leads to a 

short or long scan time. The repetition time (  ), the number of phase encoding steps (  ), the 

number of partition encoding (or slice encoding) steps (  ) and the number of acquisitions for 

the sake of averaging (    ), all contribute to the total scan time (  ) in a conventional MR 

imaging experiment giving: 

               ( 3-1 ) 

 

Making    shorter will directly reduce the total scan time. The contrast in the image is affected 

by tissue parameters such as relaxation effects and imaging parameters such as   . Of course as 

  changes, the image contrast will change as well, and if the change is for the worse, shortening 

  for reducing the scan time may not be useful. One should note shortening TR will reduce the 

overall image signal-to-noise ratio (SNR) as well. 

In order to increase the SNR, it is common to acquire the image more than once and 

average them. However if one can maintain sufficient SNR, another method to reduce the scan 

time is to reduce the number of acquisitions and ideally keep the      only one. The reduced 

SNR can be compensated for using better rf coil designs or a set of multiple rf coils (e.g. phased 

array coils).  

3.1  Unsampling and Undersampling 

The idea of this approach is to decrease the number of phase encoding and/ or partition 

encodings (   and   ). The advantage of this approach is that the image contrast remains 
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unchanged. This can be done in two different ways described below. Figure 3.1 summarizes the 

time saving strategies via reducing the number of phase and partition encodings. 

 

Figure 3.1, Time saving strategies shown in schematics of k-space sampling scheme. (A) shows a fully sampled k-
space with all the phase encoding lines collected. (B) shows a truncated k-space with only half of the phase encoding 
lines collected. This will lead to an image with lower spatial resolution and possible blurring and Gibbs ringing in the 
phase encoding direction. (C) shows an undersampled k-space with only every other phase encoding line collected. 
This effectively increases the phase encoding step (   ) which might lead to aliasing artifacts. (D) shows a k-space 
which is only partially collected. This acquisition is known as partial Fourier imaging. 

3.1.1 Reducing the number of k-space encodings with a fixed FOV 

A fixed FOV is equivalent to keeping the encoding steps (  ) unchanged. With this 

assumption, for        (or       ) with    , the acquisition time will be shortened by a 

factor of  . This is equivalent to even more truncation of the k-space signal (Figure 3-1.B). 
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However, we know that the spatial resolution will also get worse by a factor of   (i.e.    

      because: 

   
    

  
 ( 3-2 ) 

This degraded spatial resolution will lead to blurring, partial volume effects and Gibbs ringing 

artifacts. Moreover, this approach will increase the SNR by a factor of 
 

  
. Throughout this thesis 

we may refer to this method as the low-resolution method. 

3.1.1.1 Constrained Reconstruction 

In order to compensate for the loss of high spatial frequency information in centrally 

acquired k-space, there have been a number of data extrapolation methods proposed often 

referred to as constrained reconstruction [6]. Constrained methods are reconstruction 

algorithms developed in order to recover high spatial frequency information.  

The general idea of constrained reconstruction methods is to employ a priori information 

in order to compensate for the lack of high spatial frequency information in k-space. 

Conventional MR image reconstruction assumes zero for the missing high spatial frequency 

information in truncated k-space. The word “constrain” means to put a priori information such 

as bounds or a parametric model upon the reconstruction. In principle any a priori information 

about the object being imaged can be used as a constraint to improve the accuracy of the image. 

Although, it should be noted that these constraints should be employed carefully in order to 

prevent biasing the resulting images.  

Depending on the kind of constraints being used they can be generally divided into three 

categories: phase-constrained methods, nonparametric methods and parametric methods. 
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Discussing the details of each of these methods is beyond the scope of this thesis and can be 

reviewed in reference [6]. However here we briefly mention the concepts. 

The phase-constrained methods force the final reconstruction to have a certain 

predetermined phase. These partial Fourier methods are suitable for cases where the k-space is 

only partially sampled [13], [14].  

Nonparametric methods permit the use of conventional Fourier series for reconstruction 

and generally provide models for extrapolating the unsampled high spatial frequency 

information in k-space. How accurately the missing data in k-space is recovered is dependent on 

the designed constraint. Some of the famous constraints are known as finite spatial support, 

maximum entropy, linear predictability and image smoothness [6]. The nonparametric methods 

have the advantage of being relatively straightforward and computationally efficient. 

Parametric models on the other hand represent the image function in terms of a set of 

parameterized basis functions. In other words, parametric methods, provide a model for the 

image itself and try to accommodate that model to the existing artifacted image. In this sense 

parametric models can ideally create images of infinite resolution without the need of 

extrapolating the missing k-space information. This feature is well known as the concept of 

super-resolution reconstruction [1, 5].  Although the idea of parametric models has been used 

widely in different areas of signal processing, its application to imaging has been limited due to 

the complexity of the basis function and inversion process.  

Generally in parametric methods, an optimal model should be chosen and designed for 

the particular imaging application. These models should satisfy a set of requirements in order to 
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ensure robustness, accuracy and computational efficiency.  As an example, one of the models 

proposed by Haacke and Liang [1], treats the image as a series of rectangular cross sections. This 

model can resolve sharp edges of the image fairly accurately; however higher order features may 

not be successfully resolved. 

The principals of parametric method reconstructions include three steps: 1- Choosing an 

appropriate model, 2- Fitting the model to the available data and 3- Creating the image directly 

from the fitted model itself or from the extrapolated data like in nonparametric methods. 

Autoregressive moving average (ARMA) [15, 16], localized polynomial approximation (LPA) (as a 

complement to ARMA) [1, 17] and generalized series (GS) [18] are among the successful 

parametric methods. 

3.1.2 Reducing the number of k-space encodings with a fixed resolution 

If reduced spatial resolution and its associated artifacts cannot be tolerated due to the 

clinical value of the image, the previous method for saving time may not be useful. Another 

method which can maintain the spatial resolution and still reduce the scan time would be to 

reduce the number of encoding lines without changing the     . In this method, we would 

effectively increase the sampling intervals (  ) or encoding steps. Throughout this thesis we 

refer to this method as undersampling of k-space. However we know that increasing the 

sampling intervals (i.e.    to     ) will lead to cutting down the FOV to  FOV in the same 

direction. Therefore, unless the object size is larger than the new FOV ( FOV), lowering the 

sampling rate will lead to aliasing. Potentially, this approach can reduce the scan time by a factor 

of   just like the previous method. In addition, this approach will decrease the SNR to      .  
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3.1.2.1 Parallel Imaging 

Just like in the case of unsampling and constrained reconstruction, there have been 

methods proposed for interpolating the missing k-space signal in undersampled situations. One 

of the very successful and commonly used methods is known as parallel imaging. Parallel 

imaging can be considered as a subcategory of the constrained reconstruction methods. Here in 

order to compensate for the missing k-space signal and overcome the resulting aliasing artifacts, 

an array of independent receiver coils are used instead of a single homogenous receiver coil. The 

spatial sensitivity map of the employed receiver coils then are used as a priori information in 

order to combine the undersampled signal from each receiver coil into an un-aliased image 

within the desired FOV. It is important to note that parallel imaging is not an imaging sequence 

method, but only a reconstruction method.  

The number of receiver coils determines the extent of undersampling permissible for 

successfully recovering the aliased image. Many different parallel imaging methods have been 

introduced through the past years. Discussing the details of each method is not at the scope of 

this thesis [19], [20], [21]. 

There are other methods which can be used for recovering the missing k-space signal in 

undersampled situations. Another relatively new method is known as Compressed Sensing (CS) 

which is the subject of Chapter 4. 
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3.1.3  Partial Fourier 

Another strategy to reduce the scan time exploits the complex conjugate property of the 

Fourier transform of real objects to reduce the number of phase encoding steps (  ) required to 

reconstruct the image. This property can be well described with: 

                                              ( 3-3 ) 

In some applications, in order to reduce the scan time, k-space is covered asymmetrically in the 

phase encoding direction. Usually the negative half of k-space is left empty and the positive half 

is filled. The time-saving factor is determined by the degree of asymmetry. The negative half of k-

space can be either left empty (zero filled), or can be filled according to the conjugate symmetry 

of k-space. Ideally, the reconstructed image should be identical to the one where full k-space 

information was acquired.  

However, in practice, the object motion and magnetic field inhomogeneities often violate 

the realness constraint and introduce a non-zero phase term to the image function. 

Consequently image artifacts would appear if this phase is not treated properly. In order to 

overcome this problem, usually a few additional encoding lines are collected across the center of 

k-space (Figure 3.1-D).  

Most existing partial Fourier methods use this approach along with a two-step 

reconstruction procedure. The first estimates a phase function by reconstructing a low-

resolution image based on the central k-space information. And the second combines the 

calculated phase with the measured data to get the final reconstructed image.  
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4 CHAPTER 4: COMPRESSED SENSING (CS) 

With the tremendous interest in high-speed imaging, researchers continue to develop new 

image acquisition and reconstruction techniques. Most methods that attempt to reduce the scan 

time either acquire data faster or limit the number of phase or partition encodings. The former 

suffers from a loss of SNR, while the latter suffers from a loss of spatial resolution and image 

artifacts (most noticeably Gibbs ringing and aliasing) as well. There has been extensive research 

in developing methods to overcome these problems. In most methods, a priori information is 

utilized to compensate for the lack of sufficient measured data. This group of methods is also 

known as constrained reconstruction. The goal in any constrained reconstruction is to achieve 

the best way to incorporate the a priori information into the reconstruction process. Improper 

use of the a priori information may lead to reconstructions with biased or artifacted results. A 

comprehensive review of all the methods in this area is not at the scope of this thesis.  

“Compressed Sensing” or “Compressive Sampling” or “CS” is a relatively new approach which 

shows, contrary to the Nyquist sampling theorem that good quality images can be recovered 

from far fewer measurements that is usually considered necessary [22]. In this chapter we 

introduce the theory of CS and how it can be applied to MR imaging. 

 

4.1  Introduction 

Sparsity and compressibility as two important ingredients of CS, have played a fundamental 

role in many fields of science and more specifically in information technology [23, 24]. As a 

general rule of thumb, sparsity leads to more efficient compression algorithms in both signal and 
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image processing techniques. In addition, sparsity leads to dimensionality reduction and efficient 

modeling [22, 25].  

One of the novelties of CS can be extracted from the statement: “sparsity has bearings on 

the data acquisition process itself, and leads to efficient data acquisition protocols” [22]. In other 

words, CS suggests acquiring the analog signal as economically as possible taking advantage of its 

sparse nature [22, 25]. From an MR perspective this means that we can modify the data 

acquisition scheme in order to reduce the imaging time. This notion is based on the fact that any 

image (including medical images) with some structure can be efficiently compressed without 

much perceptual loss. “JPEG” compression format is a very common and modern example in the 

field of image processing which exploits the fact that many images have a sparse form of 

representation in a fixed basis (in this case a wavelet basis), meaning only a small number of 

these coefficients are necessary for reconstructing the signal. However in the case of JPEG, 

usually the image is fully acquired in the first place and then compressed by removing all the 

insignificant coefficients of its sparse representation. This process of massive data acquisition 

followed by compression can be looked at as a waste of sampling (sensing) resources (i.e., 

camera sensors). CS on the other hand, suggests acquiring the signal in an already compressed 

format so that there will be no need to throw away any excessive data. 

Therefore we are interested in undersampled situations rather than fully sampled, which 

implies that the number of measurements may be much smaller than the dimensionality of the 

signal. For any compressed sensing algorithm to work properly, two components must be 

considered carefully: recoverability and stability. The former ensures that the chosen acquisition 
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scheme or measurement matrices along with the recovery algorithm guarantees recovery of the 

missing measurements. It also addresses the sufficient number of measurements necessary for 

exact recovery of the image. The latter, stability, ensures the robustness of the algorithm in case 

of noisy or corrupted measurements.  

 

4.2 Intuitive 1D example 

In order to understand the concept of CS and its relationship with undersampling, here we 

discuss a concrete example with a one-dimensional signal of interest ( ) [26]. In this example,   

is simply a 1x128 vector with only five non-zero coefficients, which makes it an extremely sparse 

signal (Figure 4.1). This signal is the equivalent of the actual MR image in the case of CS MRI with 

one important difference that the MR image might not be sparse in its original domain.  

 

Figure 4.1, A plot of the one dimensional sparse signal  .  
 

To make a similar situation with MR imaging, we consider the problem of reconstructing 

the vector  , from a subset of its frequency (Fourier) measurements (equivalent to k-space in 
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MRI). Sensing an object by measuring selected frequency coefficients is the principle underlying 

MRI. Accordingly, here we compute the centered Fourier transform (FFT) of the vector  . 

 

Figure 4.2, The sparse signal   and its corresponding Fourier transform ( ). Only the absolute value of the Fourier 
transform is shown here. 
 

To investigate the effects of undersampling on the reconstructed signal, we keep only a 

subset of Fourier coefficients and put the rest to zero. This procedure is also known as zero-

filling. 

         ( 4-1 ) 

where    is the Fourier operator which is only evaluated at a subset of frequency domain 

samples. Here we demonstrate the effects of undersampling considering two cases: equispaced 

(uniform) undersampling and random undersampling.  

4.2.1 Equispaced (uniform) undersampling: 

As an example, from the total of 128 frequency samples, we choose only 32 equispaced 

(uniform) samples and put every other sample to zero (zero-filling). This implies an 

undersampling degree of four meaning we only have a quarter (1/4) of the total number of 

measurements as before. The undersampled zero-filled Fourier signal can be reconstructed 
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using an inverse Fourier transform. In order to compensate for the energy loss of the 

reconstructed signal due to less measurements, we simply multiply the magnitude of all the 

available samples by a factor of four 1. 

 

Figure 4.3, 25% undersampled Fourier samples of signal  . The reconstructed signal (  ) with coherent aliasing 
artifact apparent. 
 

As can be seen in Figure 4.3, the reconstructed signal (  ), suffers from coherent aliasing. 

Now we have multiple copies of the sparse vector ( ) and there is essentially no way to 

distinguish between them. This indicates that in the case of equispaced (uniform) 

undersampling, we cannot recover the original signal   from    due to the coherent aliasing 

artifacts. As the degree of undersampling increases the aliasing artifacts become even more 

severe.  

                                                      
1
 This strategy for energy loss compensation may not be suitable for all cases. For example different object sizes may 

require a different compensation strategy. However, with no a priori information from the object this is a fairly good 
approximation. 
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4.2.2 Random Undersampling 

One of the unique aspects of CS theory is to use a random undersampling scheme instead 

of equispaced (uniform) undersampling. In this case the randomly undersampled Fourier signal 

can be shown as: 

         ( 4-2 ) 

 

Figure 4.4, (A) the fully sampled Fourier series of (B) the sparse signal  . (C) 25% randomly undersampled Fourier 
series (   . (D) the reconstructed signal (  ) from the randomly undersampled Fourier series shows incoherent 
aliasing artifacts which appear like noise. 
 

Figure 4.4 shows random undersampling of the Fourier signal leads to incoherent 

aliasing. Incoherent aliasing interference with a sparse signal appears like systematic noise but 

we know that it is not caused by additive white noise which occurs in real systems.  

The uniqueness of CS reconstruction is, coefficients of the sparse signal with high enough 

amplitude can still be recognized above the level of this noise-like artifact. Once the large 

coefficients of the signal are appropriately estimated, the missing Fourier samples coming from 
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these objects can be estimated and filled in. Repeating this process can dramatically reduce the 

noise-like artifacts. Therefore de-noising of the randomly undersampled signal is one of the key 

steps in the CS algorithms. 

4.2.3  Denoising 

There are different minimization/regularization approaches for de-noising signals, each 

suitable for different applications. One of the most common methods for ill-posed problems is 

known as the Tychonov penalty approach (also known as Tychonov regularization). 

Regularization, in math and probability in many fields dealing with inverse problems, refers to 

the process of introducing additional information in order to solve an ill-posed problem [27].  For 

instance, let’s assume the following problem where   and   are known but the problem is not 

well-posed either due to non-existence or non-uniqueness of  : 

     ( 4-3 ) 

The standard approach is known as ordinary least squares and seeks to minimize the residual, In 

other words this method estimates the unknown parameters with a linear regression model: 

argmin         
  ( 4-4 ) 

where      is the Euclidean norm also known as the    norm, by definition: 

            
 

  ( 4-5 ) 

In case of an underdetermined system (e.g if         does not exist), the least square solution 

model alone is no better than the original problem. In order to give preference to a particular 

solution with desirable properties, the regularization term is introduced and included in the 

model: 
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  ( 4-6 ) 

where   is the Tychonov matrix which can be chosen suitably based on the desired solution that 

one may seek. In many cases,   is chosen as the identity matrix    , or a constant, giving 

preference to the solutions with smaller norms [28].  

To see how the Tychonov penalty method can be applied to a de-noising problem, let’s 

look at the example sparse signal     , which we introduced earlier. However this time we add 

some random noise with Gaussian distribution to it with a standard deviation of         (5% 

of the signal intensity peak).  

          ( 4-7 ) 

According to the Tychonov penalty model, one approach to de-noise the signal  , would be to 

solve the following: 

                      
        

  ( 4-8 ) 

where   is the regularization scale and       is the desired solution. This optimization trades the 

norm of the solution with data consistency. Fortunately, this is a linear problem and very easy to 

solve. A closed from solution by putting the first derivative of it equal to zero: 

   
 

   
  ( 4-9 ) 

Apparently this solution tends to scale down the whole noisy signal in hope of reducing the 

noise. However one would predict that in addition to the noise, the sparse signal will also get 

scaled down and the signal to noise ratio (SNR) will remain the same. Simulations using different 

values for                       also agrees with that prediction: 
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Figure 4.5, simulations of the recovered signal (  ) from the noisy signal ( ) via applying the Tychonov regularization 
with different lambda factors: 0.01, 0.05, 0.1, 0.2. 

As can be seen in Figure 4.5, the recovered signal is not any sparser than the original noisy 

signal  ,  which indicates this solution may not be suitable to recover the sparse coefficients of 

the signal. Qualitatively speaking, the regularization term in this solution, minimizes the energy 

of the whole signal and cannot distinguish between noise and valuable information while the 

other part tries to keep the data consistency. 

 

4.2.4 The    norm and sparsity 

An alternate approach to the regularization constraint is to replace the    norm with the 

   norm defined as: 
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            ( 4-10 ) 

It has been shown that the    norm regularization can be an effective technique for solving 

underdetermined system of linear equations [29].  There has also been an increased interest in 

the statistical community to impose a    norm constraint on regression models (or least square 

fits).  

               
 

 
       

        
  ( 4-11 ) 

The presence of the    term encourages small components of    to become exactly zero, thus 

promoting sparse solutions. Since members of    (   ’s) are independent from each other, one can 

solve this problem, again in a closed form, for each element separately by solving: 

               
 

 
         

         
  ( 4-12 ) 

The solution is followed along its derivation: 

 

 
 
 

 
                                

 

 
         

        

                               
 

 
         

      

                               
 

 
         

 

   

   

                                     
                                    
                                         

   

      

                    

                         
                     

  ( 4-13 ) 

This solution leads to an effect also known as soft-thresholding (or shrinkage) which has become 

a very popular tool in computer vision and machine learning. Applying this solution to our 

example noisy signal   with different values for                      , provides the following 

results: 
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Figure 4.6, simulations of the recovered signal     from the noisy signal   with applying the    norm regularization 
with different lambda factors: 0.01, 0.05, 0.1, 0.2. 
 

It can be seen that employing the        regularization, dramatically enhances the 

results compared to the Tychonov        regularization. The        regularization provides 

sparse results and most of the significant coefficients of the signal are recovered from the noisy 

signal. Figure 4.7 shows the performance of this approach comparing the original signal   and 

the recovered signal   . In this case, the smallest signal component was lost during the 

thresholding process.  
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Figure 4.7, comparing the original signal ( ) with the recovered solution (  ) from the noisy signal ( ) using the    
norm regularization approach. The performance of the recovery is superior compared with the Tychonov approach. 

 

This loss of information would have been prevented if we could determine the 

interference of the noise and the signal and try to recover the small components buried under 

the noise. However in this case, the added white noise is completely independent of the original 

signal characteristics (e.g. is not due to undersampling) and such determination is not possible. 

 

4.2.5 Recovery of the sparse signal from the randomly undersampled signal  

Inspired by the de-noising problem and how we took an approach to recover the signal, we 

can revisit our randomly undersampled sparse signal which showed noise-like artifacts due to 

incoherent aliasing, and apply the        penalized minimization approach in hope of 

recovering the original signal. Substituting the problem parameters into equation (4-11), we 

want to solve: 

               
 

 
         

        
  ( 4-14 ) 
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where    is the Fourier operator which is only evaluated at a subset of random frequency 

domain samples,    is the estimated signal (reconstructed image) and   is the Fourier samples  

that we have acquired (collected k-space). Unlike the previous de-nosing problem, in this case 

the variables are coupled through a Fourier operator which indicates the lack of any possible 

closed form solution. There have been numerous attempts to solve such minimization problem 

[30-32] one of which is an iterative approach known as HOMOTOPY [33]. The word HOMOTOPY 

refers to the fact that in each iteration of a given solution, the objective function for the 

minimization problem (equation (4-14)) undergoes a HOMOTOPY from the    constraint to the 

   objective. This kind of algorithm is also known as Projection Over Convex Set (POCS) [26]. 

We apply this type of approach as follows iteratively by initially assuming        and 

setting      : 

1- Computing the inverse Fourier transform to get an estimate of the signal            . 

2- Apply the soft-thresholding function at the signal domain (                   ). 

3- Compute the Fourier transform of the thresholded signal,            . 

4- Enforce data consistency in the frequency domain. This step simply puts the new 

frequency samples recovered from the previous step and adds to the already collected 

samples: 

           
                        

                       
  ( 4-15 ) 

5- Repeat until              . 
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One should note that since we are dealing with complex signals, the soft-thresholding 

function should be modified so it can handle complex values: 

                   
                              
       

   
               

  ( 4-16 ) 

We ran this iterative algorithm on the same randomly undersampled data (    for different 

regularization factors,                   and Figure 4.8 shows the results. In each case of  , 

the number of iterations needed to reach a convergence was different. The choice of lambda 

(the regularization factor) has a tremendous effect on the features of the recovered signal (  ). 

The larger the  , the more the solution will tend to be close to zero (    ) and as    ,    

converges to the ultimate sparse solution [31]. In this example,        seems to have the 

most accurate and sparse results compared to the original signal  . In Figure 4.8, you can see 

how even the smallest components of the signal can be recovered using a very small choice of  , 

and how the algorithm can lose the same components in greater choices of  . One should note 

that the number of iterations for smaller choices of    can be much more than larger ones. This 

can be considered as a tradeoff between the computation cost and accuracy of the algorithm.  
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Figure 4.8, The iterative process of recovering the undersampled signal (  ) with 25% random undersampling via 
different lambda factors.  
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We wish to push the undersampling as small as possible and study how well this iterative 

algorithm performs. In the next example, we consider starting with only 12.5% of the total 

Fourier domain information. Figure 4.9 shows the undersampling scheme and its corresponding 

artifacted reconstructed signal   . At this level of undersampling, the straight forward zero-filled 

reconstructed signal   , is almost purely artifacts and cannot be compared to the original signal 

 . 

 

Figure 4.9, the 12.5% random undersampling of the Fourier samples (  ) and its corresponding artifacted 
reconstructed signal   . It has severe incoherent aliasing artifacts and the sparse signal is almost completely lost. 

 

Using the same        iterative POCS approach as above, it can be seen that the results are not 

as accurate (Figure 4.10) and the small components of the original signal may get lost during the 

recovery process.  
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Figure 4.10, The iterative process of recovering the 12.5% undersampled signal (  ) via the    norm regularization 
approach using two different lambda factors. The algorithm did not perform as well as in the case of 25% 
undersampling (Figure 4.8) 
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4.3 Sparsity of magnetic resonance images and sparsifying transforms 

Generally medical images and more particularly MR images, do not have a sparse 

representation nature. Although there can be some exceptions to this as in MR angiography for 

example, the sparsity feature of different MR images will vary according to their contrast 

behavior. 

Therefore, in order for CS to work for MR images, one should seek a sparsifying transform. 

A sparsifying transform is defined as an operator which maps an image vector (natural images or 

MR images) into a sparse vector space [34]. Due to the interest in sparse signal and image 

representation in the past few years, research has resulted in a diverse library of sparsifying 

transforms for different types of images [35]. Here we mention only two of them. 

4.3.1 Finite difference 

For instance, finite difference can be used to represent piecewise constant images in a 

sparse domain. In a piecewise constant image, the boundaries and edges are the most important 

features and away from the boundaries the voxel values do not differ too much. Mathematically, 

finite difference is a numerical method for calculating an approximate of the derivative of the 

function     : 

      
           

 
 ( 4-29 ) 

In a more general format a finite difference is a mathematical expression of the form:  

              ( 4-30 ) 

Finite difference transform, computes the differences between neighboring voxels and creates a 

sparse map of boundary information. This map is sometimes called a gradient map of the image 



48 

 

as well.  For general MR images, finite difference may not be a good sparsifying transform since 

they usually are not piecewise constant.  

Phantoms are usually good examples of a piecewise constant objects and finite 

difference can be a perfect tool for sparsifying such images. Figure 4.11 shows a phantom MR 

image and its corresponding finite difference map which looks perfectly sparse showing only the 

enhanced edges. 

 

Figure 4.11, A phantom image (on right) which is a perfect example of a piecewise constant image. The 
corresponding sparsifying transform (finite difference) which has the ultimate sparse features showing only the 
boundary information. 
 

4.3.2 Wavelet 

Studies on image compression methods in computer science have shown that for natural 

images, discrete cosine (DCT) and Wavelet transforms are two suitable sparsifying tools [36]. 

DCT and Wavelet are the central tools in the JPEG, MPEG and JPEG-2000, image and video 

compression standards which are being used billions of times everyday to represent images and 

videos in our digital lives. JPEG-2000 specifically used the Wavelet transform in order to 

compress digital images with the goal of reducing their size without noticeable perceptual loss.  
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Over the past few years, Wavelet theory has been proven to find multiple applications in 

different fields of signal processing and continues to grow rapidly. However, most of the 

literature are highly mathematically oriented and need a major time investment in order to 

understand. Here we try to provide a brief overview of the Wavelet theory from an intuitive 

standpoint. 

4.3.2.1 Wavelets and Wavelet transform 

The “Wavelet transform” is a multi-scale representation of the digital signals. The words 

“Wavelets” however refers to a group of functions which should satisfy certain requirements. 

The name Wavelets refers to the fact that these functions should integrate to zero over their 

entire length (i.e. waving above and below the x-axes) (Figure 4.12). 

Although there are similarities between Fourier transform and Wavelet transform, there 

are advantages in the Wavelet transform which makes them superior for analyzing non-

stationary phenomena. The Fourier transform is best suited for analyzing stationary periodic 

signals. It provides a single spectrum for the whole signal. Therefore Fourier transform is not 

suitable for analyzing signals such as a musical melody as a succession of notes, each with its 

own specific frequency spectrum2.  

Wavelet transforms decompose a signal into multiple frequency bands by projecting the 

signal onto different elements of a set of basis functions (Wavelets).   These frequency bands are 

also known as “scales”. Projecting the signal into different scales is equivalent to band-pass 

filtering the signal. Wavelets are all similar to each other and only differ from each other by 

                                                      
2
 Short time Fourier transform can be used for such signals. However it is out of the scope of this thesis to discuss. 
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dilation and /or translation (Figure 4.13). There are many different families of Wavelets each 

designed and suitable for particular applications. One of the famous Wavelet families with 

orthogonal members are grouped together and known as Daubechies [37]. 

 

Figure 4.12, Wavelets from the Daubechies family [38]. 

 

Figure 4.13, The wavelet basis functions are self-similar: scaled in time to maintain the same number of oscillations 
and scaled in amplitude to maintain energy (dilation and translation) [39]. 
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Figure 4.14, Wavelet transform of an impulse function using the four coefficient Daubechies wavelets, W4 [39]. 

 

4.3.2.2 Multi-resolution analysis 

A multi-resolution analysis is simply a Wavelet transform which can be used to represent 

an image in multiple scales. The wavelet transform  decomposes a signal into a smoothed 

version of the original signal and a set of detail information at different scales [39]. The detailed 

information for images will be that which distinguishes edges. Once we remove this information 

from the image, we are left with a new image which is slightly blurred. The coarse-scale wavelet 

coefficients represent the blurry low resolution image while the fine-scale coefficients represent 
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the detail information of the sharp edges. This process can be repeated recursively to multiple 

levels. For images, each wavelet coefficient, contains both spatial and frequency information. 

Given the decomposition, the original image can be reconstructed using its corresponding scaled 

versions.  

The behavior of each element of a decomposed image can be analyzed across different 

scales. Noise has a very distinct behavior across the scales, and thus can be easily distinguished 

from the signal and manipulated as needed. This is actually a very novel method for de-noising 

image signals which is achieved by removing the noise from the signal across Wavelet scales and 

then reconstructing the noise-free image [40]. This important feature can be used in our specific 

application of compressed sensing when we attempt to de-noise the signal in hope of removing 

incoherent aliasing artifacts from the undersampled signal.   

One should note that Sparsity is not limited only to the spatial domain. Dynamic images 

are extremely sparse in the temporal dimension and Wavelet theory can be utilized in that 

dimension as well.  

Figure 4.15 illustrates how a 2D Wavelet transform decomposition works. In order to 

understand this process, we simplified the equivalent of each block. The details of this process 

are beyond the scope of this thesis. 
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Figure 4.15, Illustrating 2D Wavelet decomposition. Each block decomposes further and further by applying three 
Wavelet filters on the original image. The nature of these filters are simply mentioned above, however details are 
not at the scope of this paper. 

Figure 4.16, shows a 2D image example and how the Wavelet transform decomposes it 

into different scales. Also it can be seen how Wavelet coefficients are sparse which makes it a 

naturally suitable sparsifying transform for compression or de-noising algorithms.  

 

Figure 4.16, A 2D MR image example (on left) and its corresponding Wavelet transform. It can be seen how the 
Wavelet transform decomposes the image into different scales. Image reproduced from [26]. 
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4.4 Undersampling of images in k-space 

In this section, we evaluate the role of undersampling in k-space as it applies to MR 

imaging. We will use high resolution phantom images to produce a set of k-space that can then 

be undersampled as desired to test the CS reconstruction. We will consider a number of 

different approaches to modify k-space that also leads to reduced imaging time. 

 

Figure 4.17,Example of the relationship between the magnitude image and its associated k-space. The general rule 
of thumb indicates that the k-space data is more spread out along the direction parallel to the shorter elements of 
the image. In this case the circular shape the image results in the ball-shape of the k-space. 
 

One approach to undersample the k-space is to acquire a reduced number of phase 

encoding lines by skipping every other line. In other words as an example we want to collect only 

half of the number of phase encoding lines required by the Nyquist criterion (50% 

undersampling).  
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Figure 4.18, 50% undersampled k-space by missing every other phase encoding line and its associated reconstructed 
image with coherent aliasing artifact. 

As can be seen in Figure 4.18, the reconstructed image manifests coherent aliasing which 

is usually impossible to resolve. If we push the undersampling even further to 25% the extent of 

aliasing elevates to the point which makes it hard even for our eyes to recognize the original 

object Figure 4.19. 

 

Figure 4.19, 25% undersampled k-space by missing one fourth the total phase encoding lines required by the 
Nyquist criterion and its associated reconstructed image with severe aliasing artifact.  

A modern way for removing this aliasing due to undersampling comes from parallel 

imaging techniques. However, that is not the focus of this thesis. On the other hand, we 

observed that incoherent undersampling (random undersampling) will result in incoherent 

aliasing which usually manifests itself in the image with a noise-like behavior. This is why CS is 
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only viable using random undersampling [25, 34]. This can be demonstrated using the same 

phantom image example with the same number of samples as in the coherent undersampling 

example. 

 

Figure 4.20, Comparing the (a) equispaced and (b) random k-space sampling scheme both for 50% undersampling. 
The equispaced scheme may not be shown well in the print due to low resolution.  

 

Figure 4.21, 50% randomly undersampled (b) k-space and (a) its corresponding reconstructed image. The random 
sampling scheme results in in-coherent aliasing artifacts in the reconstructed image which are easier to remove. 

Although we demonstrated earlier with the 1D example that random undersampling can 

provide relatively recoverable images, keeping the center of k-space can dramatically improve 

the reconstruction. We can define a probability density function (PDF) with higher values (closer 

to 1) at the center of k-space and set our sampling function to follow this PDF for choosing k-

a b 

a b 
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space samples. This sampling scheme will lead to an undersampled k-space which is sampled 

more densely at the center rather than its periphery (high-spatial frequency information or outer 

k-space) (Figure 4.22).  

 

Figure 4.22, Variable density sampling scheme (with only 50% of the full samples) which takes more samples at the 
center of k-space rather than the outer k-space. This is feasible by setting the sampling function to follow a 
probability density function (PDF) which has higher values around the center of k-space. 

By applying the variable density sampling scheme to k-space there is a noticeable 

improvement in the reconstructed image in Figure 4.23.  
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Figure 4.23, 50% undersampled k-space with variable density scheme in Figure 4.22, and its corresponding 
reconstructed image with noticeably less artifacts. 

4.4.1 3D k-space undersampling 

The results of the previous 1D example suggest that the CS sampling concept can be 

extended to higher dimensions where phase encoding is used to collect the data. A reduction of 

acquisition time by a fact of “p” for an n-dimensional sequence will reduce the scan times by a 

factor of    p(n-1). Therefore, we anticipate that this approach could be a powerful means to speed 

up 3D, 4D and higher dimensionality imaging methods.   

Figure 4.24 shows the 2D undersampling scheme covering both phase encoding and partition 

encoding directions and how it applies to the same phantom image in a 3D imaging experiment: 

a b 
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Figure 4.24, 50% randomly undersampled k-space and its corresponding reconstructed image with incoherent 
aliasing artifacts. Comparing to the Figure 4.21 we can see how undersampling in both directions increases the 
incoherency of the aliasing artifacts. 

Variable density technique can also be applied in the same way as in 2D imaging by 

defining a two dimensional PDF.  

 

Figure 4.25,       plane in a 3D k-space with 50% random undersampling and variable density in both directions. 

 

 

a b 
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Figure 4.26, 50% 2D random variable density undersampled (b) k-space and (a) its corresponding reconstructed 
image. The resulting aliasing artifacts are almost invisible due to incoherency in both ky and kz directions. 

 

Figure 4.27 shows a comparison between different sampling schemes we introduced so far and 

their corresponding reconstructed images all with the same 50% undersampling. The extent and 

nature of aliasing artifacts can be better understood if we subtract the undersampled images 

from the original fully sampled image. The variable density sampling with more samples at the 

center of k-space appears to improve the reconstructed image and reduce the coherency of the 

aliasing artifacts dramatically. 

a b 
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Figure 4.27, Comparison of different undersampling schemes all with the same 50% undersampling factor. (a) one 
directional random scheme, (b) one directional random variable density scheme, (c) two directional random 
scheme, (d) two directional random variable density scheme. (e-h) corresponding undersampled reconstructed 
image, (i-l) corresponding difference image which shows the artifacts created solely due to undersampling of k-
space.  

The two dimensional random variable density undersampling shows the best 

reconstruction and creates aliasing artifacts which are very similar to Gaussian noise in their 

appearance. This is the cornerstone of CS reconstruction since the noise-like behavior of 

incoherent sampling artifacts and the sparsity of the image change the underdetermined 

undersampled image reconstruction problem (which is ill-posed) into a simple de-noising 

problem (which is usually well-posed). In the end, the goal is to reconstruct the equivalent image 

that would have resulted from the fully sampled k-space. 
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4.5  Application: Compressed Sensing MR Angiography 

In this section we apply the same undersampling and reconstruction concepts introduced 

in the above 3D example and apply them to MR angiography (MRA) imaging. For the purpose of 

simulations, we acquired a very high resolution 3D gradient echo MRA on a volunteer’s head at a 

3T Siemens scanner. The imaging parameters for this sequence were set to collect the image 

with an isotropic resolution of 0.5x0.5x0.5    , a matrix size of 448x336x192, TE=7.25 ms, 

TR=30 ms, FA= 20  and BW=80 Hz/pixel. We collected the data sagittaly so the read encoding 

direction would be cranial/caudal (Figure 4.28). This will result in the most incoherency of the 

artifacts in the transverse images, which are clinically most familiar. The entire coding and 

visualization of the images prepared for this part are done in the MATLAB software (The 

MathWorks Inc.). 

 

Figure 4.28, Image acquisition orientation for compressed sensing MRA. 

4.5.1  Methods 

For all simulations we reconstructed the images to a 512x512x192 matrix size by zero 

filling the image domain. This is done for two reasons: simplicity of simulations and coding, and 

the fact that the wavelet toolbox which is used [41] for simulations is only compatible with 

square matrices.  All the results will be presented as transverse images since it’s clinically more 
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familiar. We chose only 30 transverse slices for the purpose of this simulation. Figure 4.29, 

shows some sample images of this MRA dataset.  

 

Figure 4.29, MRA example images reconstructed in 512x512 transverse matrix size. (a-c) show three images from 
lower, middle and higher sections of the brain respectively, providing anatomical information with a high contrast 
for the vessels. (d) shows a Maximum Intensity Projection (MIP) over 30 slices (including the ones shown here). The 
MIP image shows the vascular system across the brain with a good contrast between the background tissue and 
blood vessels. 

4.5.2 Undersampling 

Throughout this section we are going to demonstrate undersampling factors of 20%, 30% 

and 50% in the ky-kz domain which can potentially speed up the 3D acquisition scheme by 5, 3.3 

and 2 times respectively. For all the undersampling factors we kept roughly only 6% of the 

central k-space fully sampled. The periphery of the k-space is randomly sampled with a variable 

density following a second degree PDF. In order to maximize the incoherency of a given number 

a b c 

d 
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of samples, the random sampling schemes were created using a Monte Carlo algorithm in 

MATLAB [34]. In order to compare different factors, undersampled k-spaces were zero-filled and 

the images were reconstructed by applying a 3D inverse Fast Fourier Transform (FFT). The 

undersampling artifacts can be compared by reviewing the individual slices as well as the MIPs. 

Figure 4.31 demonstrates how vascular information can be buried under the aliasing artifacts 

due to undersampling. 

 

Figure 4.30, Comparison of different undersampling factors. (a-c) showing the probability density function for 
variable density sampling with 20%, 30% and 50% undersampling factor respectively. (d-f) sampling scheme for 
undersampling factors of 20%, 30% and 50% respectively. 
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Figure 4.31, Comparison of different undersampling schemes and their resulting zero-filled reconstructed images. 
The upper two rows show single slice examples from lower and middle sections of the brain. The third row 
compares the MIPs. (a-d) columns respectively correspond to 100% (fully sampled), 20%, 30% and 50% 
undersampling. 

 

4.5.3 Sparsifying Transform 

Generally, the zero-filled reconstructed images are not fully sparse in the image domain, 

therefore we use the Wavelet transform we introduced earlier to sparsify these images. Each 

slice of the 3D volume of interest should be sparsified and processed individually. Once they are 

sparsified, we can apply any algorithm to separate the noise-like artifacts from the actual signal 

a b c d 
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(object). This includes any solution to the regularization problem we reviewed in Chapter 4.2, 

such as Conjugate gradient methods, POCs, etc. We use the simple solution of iterative soft-

thresholding we discussed earlier. We chose the thresholding factor for each image 

automatically by calculating the largest 5% Wavelet coefficients. This may induce total energy 

inconsistencies between different slices of the volume and needs to be compensated for. To do 

so, we will normalize all the images based on their average signal intensity before putting them 

all in a single volume for further processing. 

 

Figure 4.32, The sparsifying and thresholding iteration loop. (a) the undersampled, zero-filled image with incoherent 
aliasing and blurring, (b) Wavelet transform sparsifies the image domain, making it easier to separate noise-like 
artifacts from the actual object. (d) the soft-thresholded Wavelet coefficients showing considerably less noise-like 
artifacts. (c) The inverse Wavelet transform creates a cleaner, patchier, sparser image. The Fourier transform of this 
image will be used to fill in the missing k-space information. 

a b 

c d 
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4.5.4 Generating new k-space information 

After one round of removing the artifacts in the sparse domain (wavelets), the Fourier 

transform (k-space) of the newly generated image (Figure 4.32-C), can provide us with some 

estimate of the missing information (encoding lines) in the original undersampled k-space. 

Iteratively recovering more of the signal buried under the noise-like artifacts, this procedure can 

provide us with better and more accurate estimations of the missing k-space information. The 

number of iterations can be controlled with a breaking criterion according to the data 

consistency expression being evaluated at each iteration. The evolution of an undersampled k-

space (zero-filled) towards an estimated recovery of the missing k-space information can be seen 

in Figure 4.30. 
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Figure 4.33, The progress in estimating new k-space information through the CS reconstruction iterations for a 20% 
undersampling scheme. First row shows the k-space, second row shows a single slice and the third row shows a MIP 
though iteration 0 (zero-filled), iteration1, iteration 5 (last iteration) and the fully sampled. 

 

4.5.5  Results 

The aforementioned algorithm is described in the form of a flowchart in Figure 4.33. Also 

the reconstructed images in each iteration are shown for two example slices as well as MIP 

images compared to the zero-filled and fully sampled reconstructions (Figure 4.35 and Figure 

4.36). 
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Figure 4.34, The flowchart showing the iteration loop of CS reconstruction. The soft-thresholding loop can be 
substituted with any other algorithm as a solution for the regularization problem. 
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Figure 4.35, (A & B) showing two example slices, through iterations of the CS reconstruction for a 20% 
undersampling scheme. (a) The original fully sampled image, (b) zero-filled, (c-g) iteration 1~5 respectively. 
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Figure 4.36, MIP images comparison through iterations of the CS reconstruction for a 20% undersampling scheme. 
(a) The original fully sampled image, (b) zero-filled, (c-g) iteration 1~5 respectively. 

 

Figure 4.37 shows the comparison of the final CS reconstructed images from 20, 30 and 50% 

undersampling schemes and their corresponding fully sampled images.   
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Figure 4.37, comparison of CS reconstructed images from undersampling schemes of 20, 30, 50% and the fully 
sampled image. From up to down: the first two rows are two examples slices and the third row is the MIP 
comparison.  The fourth row shows the difference image of the CS reconstruction and the fully sampled MIP images. 
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 Vessel recovery performance 

The CS reconstruction performance in recovering the vessels can be evaluated by comparing a 

common cross section profile of a vessel in CS reconstructed images with the same profile of the 

fully sampled images. Here we drew a profile crossing two adjacent vessels with different sizes 

(one big and the other medium) and compared signal intensity of the same profile for fully 

sampled data with the 20, 30 and 50% undersampled CS reconstructed MIP images (Figure 4.38). 

As can be seen in the profiles, the widths and amplitudes remain constant except for the 20% 

profile which shows a slight loss of amplitude and width. The loss of amplitudes can be 

understood in terms of the reduced coverage of k-space and the inability of the CS 

reconstruction to recover this lost information. Since the size of the vessel is deterministic in 

choosing the compensation factor, perfect recovery of the lost energy in k-space is not feasible 

unless an a priori information is available regarding the object. The reduced width can be 

understood as a narrowing of the vessel caused by the soft-thresholding step of the CS 

reconstruction. This is one of the pitfalls of the soft-thresholding algorithm we implemented for 

CS reconstruction and can be more problematic in the presence of excessive white noise. 
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Figure 4.38, Cross section profile of two vessels compared between fully sampled MIP image, and 20, 30 and 50% 
undersampled CS reconstructed MIP image.  
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4.6  Discussion 

4.6.1 Computation cost 

Almost every algorithm which has been developed for solving the CS reconstruction 

regularization problem has an iterative nature. The aforementioned problem is usually 

underdetermined and ill-posed. Overall, these methods are computationally more complex than 

solving linear reconstruction methods. The method used in this thesis, although very basic and 

simple, still takes approximately three minutes in MATLAB to reconstruct a 512x512x30 

angiogram with 5 fold acceleration factor. More sophisticated methods may take as much as 5 

times longer than the basic algorithm.  

Beside the possibilities of code optimization in favor of accelerating these reconstruction 

times, other feasible methods such as implementing the code to run on a Graphical Processing 

Unit (GPU) can improve the processing time significantly [42].   

4.6.2 Comparison with low resolution imaging 

Reducing the number of encoding lines in any way will lead to a faster scan time. A simple 

solution would be to reduce the resolution of the image by reducing the k-space matrix size or in 

other words truncating the k-space signal. This way we don’t need to worry about the Nyquist 

sampling criterion since we are not changing the sampling rate by reducing the matrix size. 

However, by truncating the Fourier series we lose high spatial frequency information which leads 

to an increased Gibbs Ringing artifact and blurring. We refer to this way of undersampling for 

saving time as the low-resolution approach. Here we compare the reconstructed images from 

the extreme case of only 20% variable random undersampling scheme with the ones from the 
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20% low-resolution approach. The idea is to keep the scan time the same by fixing the total 

number of encodings in both approaches. Figure 4.39 shows the zero-filled reconstruction of the 

MRA example for both approaches. 

 

 

Figure 4.39, comparison of 20% variable density random sampling with CS reconstruction (top row) and 20% low-
resolution sampling scheme with zero-filling reconstruction (bottom row). Comparison is made for two individual 
slices (on left) and the MIPs (on right). The results from the two methods are almost identical with some Gibbs 
Ringing present on the low-resolution single slice images. The original matrix size of these images is quite big 
(512x512), the 20% low-resolution scheme is still a relatively big matrix as well (~229x229). Which is why the low-res 
images are still pretty good images even with zero-filling.  

The original matrix size of these images is quite large (512x512), therefore the 20% low-

resolution scheme is still a relatively big matrix (~229x229), which is why the low-resolution 

images are acceptable even with zero-filling. To show the potential differences of these two 
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sampling schemes, we truncate the original k-space to a 256x256 matrix size. Then we apply a 

20% variable density undersampling along with a 20% low-resolution sampling (~115x115) to the 

new matrix, and compare the corresponding reconstructed images (Figure 4.40). Note that the 

low-resolution matrix is zero filled and reconstructed while the variable density random sampled 

matrix is reconstructed via CS reconstruction. 

As expected the Gibbs ringing is now more prominent in the low-resolution image. On 

the other hand the 20% CS reconstruction does not show Gibbs Ringing of any kind and the 

vessel definition is sharper than the low-resolution images. Nevertheless, there are still small 

vessels that are not visible with the random sampling scheme, primarily because of the loss of 

energy in these structures due to the missing k-space information. Even the CS reconstruction 

fails to recover all the missing high spatial frequency k-space information.   

To be fair, if a more sophisticated regularization algorithm[34] were used in order to 

reconstruct the 20% variable density undersampled acquisition, we might have been able to 

recover the k-space with more precision. Also designing the variable random sampling scheme 

optimally can be crucial in increasing the chances for exact recovery. On the other hand using a 

data extrapolation method [6] to recover the missing outer k-space information in the low-

resolution matrix can potentially enhance the results. However the comparison made here is 

only to show the advantages of CS over low-resolution imaging. 
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Figure 4.40, , comparison of the artifacts in: 20% low-resolution sampling scheme with zero-filling reconstruction 
and 20% variable density random sampling with CS reconstruction. The red arrows show the Gibbs Ringing artifact in 
the low-resolution scheme. The yellow arrow shows the structural detail missing in the CS method. The blue circles 
show the better vessel definition in the CS method compared with the low-resolution scheme. 
 

The difference images shown in Figure 4.41, indicate that both approaches lose a 

considerable amount of image information due to undersampling compared with the fully 

sampled images. The difference in the low-resolution results is more prominent compared with 

the CS approach due to the intrinsic higher SNR of the low-resolution reconstruction. The 

remnant difference of the already recovered structures (such as the middle cerebral arteries) in 

the CS approach is partly due to an incomplete compensation for the energy loss of the signal 
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due to undersampling. This will create an offset in the signal amplitude of the reconstructed 

images. 
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Figure 4.41, comparison of, 20% low-resolution sampling scheme with zero-filling reconstruction, 20% variable 
density random sampling with CS reconstruction and fully sampled images. The bottom row shows the difference 
image of the MIPs, comparing the low-resolution approach to the CS reconstruction. 
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4.6.3 CS artifacts 

The CS reconstruction tends to shrink the magnitude of the reconstructed sparse 

coefficients. This shrinkage can sometimes lead to disappearance of an originally small image 

coefficient. The image contrast plays an important role in the ability to vastly undersample the k-

space and still be able to recover the image using CS reconstruction. The higher the image 

contrast, the sparser the image coefficients and easier to recover. Therefore, with an increased 

undersampling factor, the most common artifacts in CS reconstruction are not the usual loss of 

resolution or increase in aliasing interference, rather loss of low-contrast features in the image. 

This is why CS in predominantly viable in applications where high resolution high contrast 

features are required and present, and reducing the scan time is very important.  

4.7 Conclusion 
In this chapter we demonstrated the theory of CS and how it can be applied to MRI with 

the goal of faster imaging. We compared reconstructions with different undersampling schemes 

and proved the strength of random undersampling compared with uniform undersampling. The 

algorithm introduced here for CS reconstruction is a simple and basic one and there is room for 

improving the results using a more sophisticated regularization. This however might increase the 

reconstruction time which is not desirable in clinical applications. 

Other data extrapolation methods use a priori information provided via defining a model 

either for the object being imaged or the signal behavior in k-space in order to estimate the 

missing k-space information [6]. These models are usually very basic and primitive in their 

definition, compromising the complexity of the actual object (or signal). This will lead to false or 
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biased estimations of the missing k-space points in cases where the model is not able to describe 

the object (or signal) perfectly. Whereas in CS the equivalent of the a priori information is simply 

a transform of the initial estimated image (e.g. wavelet transform) and there is no need for 

defining a model. This removes any possible biased data recovery due to the absence of a 

comprehensive model.  

In conclusion, CS is a viable fast MR imaging technique which can be implemented easily in 

conventional MRI sequences. The reconstruction algorithm introduced here, needs to be 

improved to ensure the recovered image provides better quality and more accurate clinical 

information compared with a simple low-resolution acquisition of the same scan time. In this 

regard, a simulated clinical marker such as a narrowed artery would be useful in determining the 

performance of CS in resolving the stenosis and more importantly avoiding false positives. 
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5 CHAPTER 5: JOINT ACQUISITION 

5.1  Introduction: 

High resolution anatomical imaging for quantitative parameter mapping (such as T1 and 

T2) is of interest in a wide range of clinical applications such as oncology and neurology. The 

major concern in MR parameter mapping techniques is usually the long scan time due to the 

need for multiple data points and high resolution, making these acquisitions clinically 

impractical. Sacrificing the number of data points in order to save time can lead to less accurate 

estimations of the parameters of interest and may impose limitations especially when analyzing 

multi-compartmental signal behavior [43, 44].  

Data undersampling is an attractive strategy to reduce the scan time in such situations. 

However depending on the chosen undersampling scheme, the resulting artifacts (such as 

aliasing, Gibbs ringing and blurring) may limit the utility of the reconstructed images unless they 

are removed or the missing data is appropriately estimated. Reasonable estimates of the missing 

data can be accomplished by parallel imaging for instance, a widely used undersampling strategy 

for scan acceleration. Parallel imaging utilizes the spatial sensitivity profiles of a multichannel 

receiver coil array to interpolate the missing data in k-space.  However,  intrinsic SNR penalties 

associated with parallel imaging and its inherent noise amplifications and high spatial frequency 

aliasing artifacts may limit their use in quantitative parameter mapping imaging even at low 

accelerating factors [45]. Among other undersampling methods, It has been shown that 

compressed sensing (CS) can also be applied in MR parameter mapping to accelerate the scan 

time [46]. In CS, the k-space data is randomly undersampled which leads to incoherent aliasing 
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artifacts. These artifacts appear like noise in a sparse representation of the image and can be 

reduced in the process of recovering the underlying image coefficients. However the 

considerably long reconstruction time required in CS, can be a limiting factor for clinical 

applications.  

Keyhole imaging and view sharing are two other techniques which have been shown to be 

useful in reducing the scan time and increasing the temporal resolution [47-55]. Here we 

introduce a new approach which is a combination of the idea of random undersampling in CS, 

keyhole imaging and view sharing for quantitative MR parameter mapping acceleration. We use 

multi-echo spin echo (MSE) T2 mapping as a means to test this new concept. 

5.2  Theory: 

The idea of keyhole imaging and view sharing techniques are essentially similar in their 

intrinsic objective of sharing the k-space information between different images in a multi data 

point acquisition. The central k-space information determines the overall low spatial frequency 

contrast of the image while the outer k-space defines the details of the image (high spatial 

frequency component).  

5.2.1 Keyhole imaging: 

Keyhole imaging was introduced in 1993 by Vaals and Jones in two papers independently 

[56, 57] with the same goal of increasing the temporal resolution in high spatial resolution 

dynamic MR imaging. In dynamic imaging, the tissue of interest is imaged in a consecutive 

sequence of images (frames or updates) along time in order to resolve a dynamic change in the 

signal. One immediate application of the Keyhole imaging is in time-resolved contrast enhanced 
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MR angiography (CE-MRA), where high temporal resolution is desired for resolving the evolution 

of the contrast agent in the tissue of interest [47]. The important assumption in Keyhole imaging 

is that low spatial frequency information (central k-space) is sufficient for studying dynamic 

signal changes. Later on It was shown that the method could be applied in numerous other 

applications [53] such as MR mammography, interventional MR imaging [50], functional imaging 

and temperature monitoring of therapeutic hyperthermia.  

The method of Keyhole imaging is based on collecting a reference image with the desired 

high spatial resolution via collecting a large k-space matrix. The update images (frames) on the 

other hand will be collected only for the central part of the k-space with a low spatial resolution. 

The outer k-space (high spatial frequency) information of the reference image is then used in 

reconstruction steps to improve the spatial resolution of the subsequent frames. In other words, 

the missing outer k-space information in the update images (frames) are filled with the 

corresponding data from the reference image k-space matrix creating a fully sampled composite 

k-space (Figure 5.1). This way, the reconstructed frames will effectively have the same high 

spatial resolution of the reference image, but can be acquired in much less scan time. The 

assumption is that the dynamic signal information will be preserved since they have low-spatial 

frequency nature and the central k-space is collected for all of the frames. If the signal changes 

are predominantly high spatial frequency in their nature, the Keyhole method may not be able to 

recover that information since their corresponding k-space data is not updated in each frame. 

Therefore the central part of k-space would have to be increased, reducing the utility impact of 

the keyhole method. 
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Figure 5.1, Schematic of keyhole imaging; the reference image is collected with full resolution in large k-space matrix 
size. The consecutive frames are only collected for the central block of k-space for high temporal resolution. The 
outer k-space information for all the frames is borrowed from the reference image (ref’) In order to increase their 
effective spatial resolution. 

One of the pitfalls in the Keyhole technique is the potential inconsistency between the 

reference outer k-space data and the updated central k-space data. This might happen because 

of motion between different frames and local field variations due to susceptibility effects or 

changes in contrast. All these can lead to not only Gibbs ringing artifacts but also simply incorrect 

or inappropriate information being added to the outer k-space data [53]. 

5.2.2 View sharing technique 

View sharing is similar to keyhole imaging in sharing the assumption that k-space 

information is redundant in dynamic imaging and therefore can be shared between different 

frames. The difference however is that in view-sharing the k-space in divided into multiple blocks 

and the central k-space is collected more frequently than the higher order k-space blocks. 

Therefore the temporal resolution of the acquisition can be increased. In the reconstruction 

steps, the missing k-space segments in each frame are filled with those from the closest 

neighboring frames. The acquisition schemes, the size and number of k-space blocks, the data 
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combination and data reconstruction can be modified according to the desired application. As an 

example, consider a 3D k-space divided into four blocks and labeled as shown in Figure 5.2. 

 

Figure 5.2, The schematic showing k-space divide into 4 blocks labeled A, B, C and D, going outward in k-space. Here 
the division of k-space is done along the ky (phase encoding) direction. The kz (slice encoding) direction can be 
divided into blocks as well. 

One possible acquisition scheme would be to collect k-space blocks consecutively with 

the following order: A, B, A, C, A, D, and then repeat this order as demonstrated in Figure 5.3. In 

addition, before the beginning of this cycle, a fully sampled k-space can be acquired (as a 

reference dataset) to help reconstruct the first few frames.  Each frame then can be 

reconstructed by combining k-space blocks from the neighboring time points. In other words, for 

each frame the missing k-space blocks can be estimated by substituting the closest match block 

or by interpolating between the closest neighboring blocks either linearly or exponentially [47].  
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Figure 5.3, One example of how a view-sharing acquisition could be designed like. The order of collecting k-space 
blocks is depicted in the schematic figure. Reconstructing each frame is possible by combining k-space blocks from 
the neighboring time points. For each time point (frame) the missing k-space blocks can be estimated by linearly 
interpolating (in time) between the closest neighboring blocks which were acquired. I() denotes an interpolation 
operator. 

 

5.2.3 Enhanced view sharing (view-sharing+) for parameter mapping 

For the purpose of parameter mapping the signal evolution along the time points is 

deterministic in designing the acquisition scheme. In the case of MSE T2 mapping for example, 

the signal evolution along the echo train is an exponential decay. This dynamic signal usually has 

a dominant low spatial frequency nature. Therefore we manage to preserve the low-spatial 

frequency information in k-space by making sure that the central blocks are acquired for each 

and every frame (echo). This feature is inherited from the concept of keyhole imaging. Figure 5.4 

demonstrates the modified view sharing acquisition scheme. In order to prevent confusion, we 
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are calling this combined method of view sharing and keyhole imaging, the “view-sharing+” 

throughout this thesis.   

 

Figure 5.4, Modified view sharing acquisition scheme for collecting a multi spin echo T2 mapping imaging. The 
central k-space block is acquired for every time point (echo). The missing outer k-space blocks are shared by 
interpolating between the closest neighboring acquired blocks. 

The combination process for each frame can be more simplified by not interpolating 

higher order k-space blocks either and sufficing to choose the nearest neighboring frame and fill 

the missing blocks accordingly. For example the same fifth time point in the acquisition scheme 

depicted in Figure 5.4, can be reconstructed with the following combination: (D4, D6, B5, A5, B5, 

C6, D4).  
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5.2.4 k-space inconsistencies  

In applications where the view-sharing+ is feasible, the finer details of the image which 

are stored in the outer k-space are assumed to be essentially identical between the neighboring 

frames. On the other hand collecting the central k-space for every frame is a limiting factor for 

increasing the imaging frame rate (temporal resolution). Therefore, In order to decrease the 

scan time even further, we tend to make the central k-space block smaller. Considering the 

scheme shown in Figure 5.4 with the central k-space block (A) and the outer k-space divided into 

three blocks (B, C, D), the time saving factor ( ) can be calculated as follows.  

  
    

 
 ( 5-1 ) 

where   is the ratio of the size of the central block (A) relative to the size of the k-space matrix 

thus, the smaller the central k-space block, the faster the scan. This is critical since by making the 

central k-space block smaller, the outer k-space blocks will cover some of the low-spatial 

frequency information which is not necessarily identical from one frame to the other. If we fail to 

resolve these k-space blocks via sharing, we are likely to experience Gibbs ringing-like and 

ghosting-like artifacts. This is easily apparent especially in cases where the images of neighboring 

frames have significantly different signal and contrast. For instance a MSE scan with relatively 

large echo spacing. We will demonstrate this phenomenon later in the Results section. 

5.2.5 Joint acquisition 

We propose using a CS like sampling approach in view-sharing+ acquisition with 

randomly sampled outer k-space rather than the common block design of k-space discussed 

earlier. The problem with the shared k-space inconsistencies and resultant artifacts can be eased 

with the idea of random undersampling. We can relate the same incoherency phenomenon of 
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aliasing artifacts in images with randomly undersampled k-spaces in CS, to the incoherent Gibbs 

ringing or ghosting like artifacts in the images from randomly view-shared k-spaces. 

Consider a k-space with an in-plane matrix size of 256x256 assuming the same acquisition 

scheme in Figure 5.4, where each three neighboring frames share their outer k-space 

information. In this case we can extend the scheme to a 3D acquisition by undersampling the k-

space in both phase and partition encoding directions. We create three complementing sampling 

schemes in ky-kz plane where they have the central 64x64 block fully sampled (accounting for 

almost 6% of the k-space) and the outer k-space (the 94% rest of k-space) is randomly but 

uniformly undersampled by a factor of three. The schemes are designed in a way that their outer 

k-space randomly collected samples do not overlap with each other. In other words, putting all 

the data from the three undersampled neighboring frames together will create a fully sampled k-

space. A schematic of the k-space schemes and their combination can be seen in Figure 5.8. We 

refer to this sampling scheme as the “joint acquisition”. 

 

5.3 Results 

In order to demonstrate the joint acquisition concept, we will apply the methods 

mentioned above to a MSE imaging experiment with the goal of decreasing the scan time while 

preserving the quality of the reconstructed image. The performance of the algorithm will be 

demonstrated by comparing the T2 maps created from the images with fully sampled k-space, 

view-sharing+ and the joint acquisition approach. All the simulations were done in MATLAB (The 

Mathworks Inc.). 
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5.3.1 Data collection 

We scanned a healthy volunteer in a 3T Siemens Verio scanner using a 32 channel head 

RF coil, using the MSE sequence. The imaging parameters were as follows: matrix size=256x256, 

resolution=1x1x4    , FA=180 , TR=1000ms, TE=8.8-281.6ms with  TE=8.8ms (32 spin echoes) 

and a total imaging time of 256 seconds. We only collected a single 2D slice for the purpose of 

simulations; however our method can be readily applied to a 3D dataset. Figure 5.5 shows three 

examples of fully sampled magnitude images from three echoes, one at the beginning of the 

echo train, one at the middle and one at the end, showing the different contrast dynamics 

throughout the echo train. 

 

Figure 5.5, Three example echo magnitude fully sampled image. The third echo in the 32 echo train (TE3=26.4 ms), 
the 13

th
 (TE13=114.4 ms) and the 27

th
 (TE27=237.6). The T2 signal evolution can be seen along the echo train. 

The T2-weighted signal evolution of all the 32 echoes can be plotted for a homogenous 

area in the image along the echo train (Figure 5.6). The T2-weighted exponential decay can be 

seen in the signal evolution. The first echo is an outsider in the exponential decay curve which is 

due to the fact that it takes some time for the echo train to reach steady state. Therefore we do 

not use this echo in our simulations to avoid T2 estimation errors. 
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Figure 5.6, The T2-weighted signal evolution along the echo train showing the exponential T2 decay for the signal of 
a homogenous area on the image. 
 

5.3.2 Sampling schemes 

We performed the simulations with two sampling strategies: view-sharing+ and joint 

acquisition. Three separate sampling schemes were created with a 256x256 matrix size, where a 

central k-space block is always fully sampled for both strategies and the outer k-space is divided 

into three complementing parts accordingly. The imaging scheme is the same as it was shown in 

Figure 5.4. The composite k-space for each echo (frame) is created by combining the outer k-

space information from the neighboring echoes while preserving all the acquired blocks.  

The view-sharing+ sampling scheme has the central 64 phase encoding lines fully 

sampled and the outer k-space is divided into three blocks each covering 32 lines on either side 

of the k-space. The time saving factor according to the equation (5-2) is 0.5 which means by 

employing this scheme we can shorten the scan time by a factor of two.  
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Figure 5.7, The view-sharing+ k-space schemes for a 256x256 in-plane matrix size for three consecutive echoes with 
the central 64 phase encoding lines (A) fully sampled and the outer k-space divided into three segments (B, C and D) 
which each cover 32 phase encoding lines on each side of k-space. The resulting composite k-space (TE2c) with the 
shared outer k-space blocks from its neighboring echoes (TE1 and TE3) and the central k-space from the TE2 itself. 

 

Figure 5.8, The joint acquisition k-space schemes for a 256x256 ky-kz plane matrix size for three consecutive echoes 
with the central 64x64 block  fully sampled and the outer k-space undersampled randomly and uniformly by a factor 
of three. The resulting composite (joint) k-space (TE2c) with the shared outer k-space samples from its neighboring 
echoes (TE1 and TE3) and the central k-space from the TE2 itself. The outer k-space samples do not overlap and 
instead complement each other. 

 

On the other hand for the joint acquisition scheme we collect the central 64x64 k-space 

block fully sampled (6% of the total k-space) and the remaining outer k-space is sampled 

randomly only by a factor of three. Note that in the joint acquisition scheme, the k-space is 

undersampled in the ky-kz plane for a 3D acquisition. The time saving factor for the joint 

acquisition scheme is: 
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        ( 5-4 ) 

which means by employing the joint acquisition scheme we can shorten the scan time roughly by 

a factor of 2.66.  

One can note that the time saving factor is not equal between the view-sharing+ 

approach and the joint acquisition approach. Our simulations showed that choosing such small 

central k-space in the view-sharing+ approach for reducing the scan time even further, could 

induce excessive artifacts and not lead to an acceptable reconstructed image. Therefore the joint 

acquisition approach has the advantage of shorter scan time in 3D imaging already. 

5.3.3 Reconstruction 

In order to simulate the reconstruction, we demonstrate two scenarios: (a) only 

reconstructing three echoes from the beginning, middle and the end of the echo train, (b) 

Reconstructing all the echoes (echo train length =32) by sharing the k-space between each three 

neighboring echoes. The reason for demonstrating the first scenario is to accentuate the 

artifacts due to k-space inconsistencies between images with relatively further echo times apart 

from each other in a MSE imaging experiment. This way we can compare the two sampling 

schemes (view-sharing+ and joint acquisition) easier. 

5.3.3.1 (a)  Reconstruction of three echoes  

We chose three echoes with relatively large TE intervals: TE1=132 ms, TE2=176 ms and 

TE3=264 ms.  We applied the undersampling schemes defined above and showed in Figure 5.7 

and Figure 5.8, to the fully sampled k-space of these three echoes. In order to reduce the k-

space inconsistencies due to overall signal difference between the echoes, we scaled the k-space 
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samples before merging them into each other. The scaling factor can be defined by calculating 

the average signal intensity of a homogenous area from the zero filled reconstructed images. 

The k-space for each echo is then normalized by this scale factor. The same images were 

reconstructed using the joint acquisition sampling schemes introduced in Figure 5.8 including the 

same scaling correction for the signal difference between frames. 

The resulting images for the view-sharing+ and joint acquisition sampling schemes are 

demonstrated in Figure 5.9. At the first glance the view-sharing+ reconstruction results might 

seem pretty accurate except for some errors in estimating the edges such as in the CSF border. 

However a closer look at the images (Figure 5.10) reveals the Gibbs ringing and ghosting like 

artifacts we discussed. Luckily we did not have any major vessels crossing this slice. In that case 

we would experience the same artifacts around the vessels3. There are methods for removing 

these artifacts by applying a custom designed edge preserving filter throughout the image. 

Amartur and Haacke showed [3, 58] this technique for truncated k-space and its corresponding 

Gibbs ringing artifacts. A more accurate approach would essentially find the resulting PSF of such 

inconsistency in the k-space and resolve it by applying a filter in the k-space. 

The images from the joint acquisition sampling scheme on the other hand, do not suffer 

from the Gibbs ringing and ghosting like artifacts. This is the advantage of random 

undersampling compared with the blocked design of k-space in view-sharing+ scheme. However 

we can still observe the false recovery of the edges (Figure 5.10). It is not surprising to have 

some error in the recovery of the edges. Nevertheless the edge information is stored in the high 

spatial frequency Fourier samples which locate in the outer k-space. Ultimately the composite 

                                                      
3
 We have simulated this on a multi FA acquisition, the results are omitted from the thesis 
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high spatial frequency information shared from the other echoes will not be completely accurate 

estimates of the missing k-space information. Especially in this scenario where the images have 

extremely different echo times. 

 

Figure 5.9, The fully sampled images of three echoes (TE1=132 ms, TE2=176 ms and TE3=264 ms) compared with 
view-sharing+ and joint acquisition reconstructions. At first glance they might appear similarly accurate; however 
there are faulty estimations in sharp edges of the images such as the CSF borders. There are also Gibbs ringing and 
ghosting like artifacts in the view-sharing+ results. 
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Figure 5.10, Comparison of the zoomed image of the fully sampled, view-sharing+ and joint  acquisition 
reconstruction of TE1=132 ms. The red arrows show the Gibbs ringing  and ghosting like artifacts in the view sharing 
reconstruction close to the sharp transitions of signal in the object. On the other hand, joint acquisition 
reconstruction is free of such artifacts. 
 

5.3.3.1 (b)  Reconstruction of all the echoes 

In this scenario we apply the sampling schemes introduced earlier to the full echo train of 

the MSE imaging experiment by sharing the k-space between each three neighboring echoes.  

Contrary to the previous scenario, here we have a very small echo spacing (          ) and 

thus the neighboring echoes are very close to each other in terms of their contrast and overall 

signal. This is an advantage for the joint reconstruction method since the k-space inconsistencies 

will be minimized between neighboring echoes. The resulting images for both view-sharing+ and 

joint acquisition schemes and their comparison with the fully sampled images are shown in 

Figure 5.11.  



99 

 

 

Figure 5.11, Three example echoes (TE1=132 ms, TE2=176 ms and TE3=264 ms) of the full echo train in fully 
sampled images compared with the view-sharing+ and joint acquisition methods. The sampling schemes were 
applied to the whole echo train. Surprisingly the view-sharing+ scheme performed as well as the joint acquisition 
scheme. Both provided almost accurate recovery of the images. This is due to small echo spacing between 
neighboring echoes and consequently minor signal changes between them and less k-space inconsistencies.  
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5.12, Comparison of the zoomed image of the fully sampled, view-sharing+ and joint  acquisition reconstruction 
when applied to the full echo train. This image is from TE=132 ms. The reconstructions are far superior compared 
with the first scenario. There is no apparent Gibbs ringing or ghosting like artifacts. 

5.3.4 T2 maps 

The reconstructed images from the second scenario were used to create the pixel by 

pixel T2 maps via fitting the signal evolution along the echo train to an exponential decay model. 

The T2 maps generated from the fully sampled images are shown and compared with the one 

created from the view-sharing+ approach and the joint acquisition approach. Surprisingly all the 

maps look essentially identical. This indicates that both the view-sharing+ and joint acquisitions 

performed quite well when applied on the full echo train. 
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Figure 5.13, comparison of the T2 maps generated from fully sampled, joint acquisition, and the view-sharing+ 
schemes. The maps are essentially identical. Their differences are not visually observable.  

The percentage difference error for the T2 maps were generated as follows: 

                   
                     

      
     ( 5-6 ) 

                      
                        

      
     ( 5-7 ) 

The error maps along with their corresponding error distribution are shown in Figure 5.14. The 

error distribution has a quite narrow histogram with a 5-95 percentile of less than 5% absolute 

error in both cases. The joint acquisition scheme tends to have high errors only at the sharp 

edges of high signal transitions in the object (such as CSF and the eyes) while the dyamic view 

sharing  scheme has high errors spread across the object in the T2 map.  
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Figure 5.14, percentage error maps between T2 maps generated from the fully sampled images and view-sharing+ 
and joint acquisition schemes. The error distribution for each scheme is also shown. The joint acquisition and view-
sharing+ both generally performed quite well with considerably low error distributions.  The view-sharing+ 
reconstruction tends to have errors all over the image while the joint acquisition scheme has high error only at the 
sharp edges of the image. 

 

5.4  Discussion 

5.4.1 Performance 

Both of the acquisition schemes (view-sharing+ and joint acquisition) performed quite 

well in reconstructing the full train of spin echoes with the only difference that the joint 

acquisition is faster and is applied in 3D. The reason as it was mentioned before is the short echo 

spacing between the neighboring echoes in the joint reconstruction. Therefore the contrast 

and/or signal difference between the shared k-space information is minimal and consequently 



103 

 

the k-space inconsistencies are marginal. Here we show three of the neighboring echoes along 

with their corresponding k-spaces to show why these methods performed well. 

 

Figure 5.15, comparison of the magnitude and their corresponding k-space of three neighboring echoes in the multi-
echo spin echo train with TE1=132 ms, TE2=140.8 ms and TE3=149.6ms (deltaTE=8.8 ms). The signal and contrast 
difference between these echoes are very marginal. Therefore joint reconstruction performs well. 

5.4.2 Comparison with low resolution imaging 

Reducing the number of encoding lines in any way will lead to a faster scan time. A simple 

solution would be to reduce the spatial resolution of the image by reducing the k-space matrix 

size or in other words truncating the k-space signal. Here we compare the T2 maps generated 

from the joint acquisition with the one created from its equivalent low-resolution approach. The 

scan time is kept the same between two methods by fixing the total number of encodings in 

both approaches the same. 
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Figure 5.16, comparison of the T2 maps generated from fully sampled, joint acquisition, and the low resolution 
acquisition schemes. The maps from the low resolution scheme suffer from blurring and excessive Gibbs ringing 
artifacts. 

The blurring and Gibbs ringing artifacts due to k-space truncation in the low-resolution 

acquisition scheme manifested themselves in the resulting T2 maps with an excessive partial 

volume effect which makes them practically unusable. The results from the low-resolution 

scheme could be improved using the k-space extrapolation algorithms [1, 2, 4, 5]. All these 

methods however need a priori information about the object of interest. 

5.5 Conclusion 

In this chapter, we showed here that a combination of keyhole imaging and view-sharing 

acquisition can be employed in collecting a multi-echo spin echo dynamic imaging with the 

purpose of pixel by pixel T2 mapping and with the goal of faster acquisition. We showed that 

there are advantages in randomly collecting the outer k-space information instead of employing 

the blocked approach. We also showed that the presence of discontinuities between the 

neighboring data points, the more severe the inconsistencies in the composite k-spaces and 

consequently the more artifacts in the reconstructed images. 
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The implementation of the joint acquisition in a given sequence is generally easy and 

straightforward. The joint acquisition scheme can be applied to other dynamic imaging 

experiments. This includes multi flip angle acquisition for T1 mapping, time-resolved contrast 

enhanced magnetic resonance imaging (CE-MRA) for resolving the contrast agent evolution in-

vivo. However the applications are limited to imaging experiments where the complex phase is 

similar between different frames. This is due to induced inconsistencies in the complex k-space 

signal, which are not resolvable. Our simulations showed failure when we applied the joint 

acquisition scheme to multi-echo gradient echo imaging for T2* mapping because of major 

differences in the phase. We are still trying to find a solution for resolving this limitation. 
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6 SUMMARY AND FUTURE DIRECTIONS 

The main theme of this thesis was focused on developing techniques for faster acquisition of 

MR Images. We started this project seeking ways to accelerate some of our high resolution 

imaging techniques such as MR angiography and MR venography using susceptibility weighted 

imaging. At the same time we could use the same technique for increasing imaging spatial 

resolution to capture even smaller vascular structures in a reasonable time and with sufficient 

SNR.  

Compressed Sensing as a relatively new technique seemed very exciting to pursue our goals. 

Therefore I decided to review the current literature and try to develop the theory of CS sampling 

and reconstruction leading to its application in MRI. Our simulations showed advantages of CS 

reconstruction and the limitations associated with it which should be considered if implemented 

into a conventional MRI sequence.  

Along the way the novel idea of “joint acquisition and reconstruction” came along where we 

combined our experience with CS random sampling and some dynamic imaging techniques for 

faster multi data point imaging such as multi echo imaging. We showed that the advantages 

provided by random undersampling schemes can improve the reconstructed images from any 

general view-sharing imaging acquisition. We also showed that certain precautions must be met 

when designing view-sharing acquisition schemes in order to make sure the reconstructed 

images will provide clinically reliable images. 

I just started exploring the concepts of fast imaging and constrained reconstruction. Future 

directions of this project may be listed as follows: 
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 Improving the CS reconstruction using better regularization algorithms 

 Implementing CS and joint acquisition sampling schemes to our current state of the art 

sequences where they fit 

 Implementing the MATLAB CS and joint reconstruction scripts into a standalone 

programming environment (such as C++) 

 Examining the joint acquisition technique for other dynamic imaging experiments 

 Studying the possibilities of combining CS with some classical data extrapolation 

techniques 

 Combining the CS reconstruction with the joint reconstruction to further reduce the 

number of samples and consequently the scan time  
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The relatively long scan times in Magnetic Resonance Imaging (MRI) limits some clinical 

applications and the ability to collect more information in a reasonable period of time.  

Practically, 3D imaging requires longer acquisitions which can lead to a reduction in image 

quality due to motion artifacts, patient discomfort, increased costs to the healthcare system and 

loss of profit to the imaging center.  The emphasis in reducing scan time has been to a large 

degree through using limited k-space data acquisition and special reconstruction techniques. 

Among these approaches are data extrapolation methods such as “constrained reconstruction” 

techniques, data interpolation methods such as parallel imaging, and more recently another 

technique known as “Compressed Sensing” (CS). In order to recover the image components from 

far fewer measurements, CS exploits the compressible nature of MR images by imposing 

randomness in k-space undersampling schemes. In this work, we explore some intuitive 

examples of CS reconstruction leading to a primitive algorithm for CS MR imaging. Then, we 
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demonstrate the application of this algorithm to MR angiography (MRA) with the goal of 

reducing the scan time. Our results showed reconstructions with comparable results to the fully 

sampled MRA images, providing up to three times faster image acquisition via CS. The CS 

performance in recovery of the vessels in MRA, showed slightly shrinkage of both the width of 

and amplitude of the vessels in 20% undersampling scheme.  The spatial location of the vessels 

however remained intact during CS reconstruction. 

Another direction we pursue is the introduction of “joint acquisition” for accelerated 

multi data point MR imaging such as multi echo or dynamic imaging. Keyhole imaging and view 

sharing are two techniques for accelerating dynamic acquisitions, where some k-space data is 

shared between neighboring acquisitions. In this work, we combine the concept of CS random 

sampling with keyhole imaging and view sharing techniques, in order to improve the 

performance of each method by itself and reduce the scan time. Finally, we demonstrate the 

application of this new method in multi-echo spin echo (MSE) T2 mapping and compare the 

results with conventional methods. Our proposed technique can potentially provide up to 2.7 

times faster image acquisition. The percentage difference error maps created from T2 maps 

generated from images with joint acquisition and fully sampled images, have a histogram with a 

5-95 percentile of less than 5% error. This technique can potentially be applied to other dynamic 

imaging acquisitions such as multi flip angle T1 mapping or time resolved contrast enhanced 

MRA. 
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