3,492 research outputs found

    Application of Non-negative Matrix Factorization to LC/MS data

    Get PDF
    International audienceLiquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, non-negative matrix factorization (NMF) is well suited for its processing, but it has barely been used in LC/MS. Also, these data are very difficult to deal with since they are usually contaminated with non-Gaussian noise and the intensities vary on several orders of magnitude. In this article, we show the feasibility of the NMF approach on these data. We also propose an adaptation of one of the algorithms aiming at specifically dealing with LC/MS data. We finally perform experiments and compare standard NMF algorithms on both simulated data and an annotated LC/MS dataset. This lets us evaluate the influence of the noise model and the data model on the recovery of the sources

    QCD Technology: Light-Cone Quantization and Commensurate Scale Relations

    Get PDF
    I discuss several theoretical tools which are useful for analyzing perturbative and non-perturbative problems in quantum chromodynamics, including (a) the light-cone Fock expansion, (b) the effective charge αV\alpha_V, (c) conformal symmetry, and (d) commensurate scale relations. Light-cone Fock-state wavefunctions encode the properties of a hadron in terms of its fundamental quark and gluon degrees of freedom. Given the proton's light-cone wavefunctions, one can compute not only the quark and gluon distributions measured in deep inelastic lepton-proton scattering, but also the multi-parton correlations which control the distribution of particles in the proton fragmentation region and dynamical higher twist effects. Light-cone wavefunctions also provide a systematic framework for evaluating exclusive hadronic matrix elements, including timelike heavy hadron decay amplitudes and form factors. The αV\alpha_V coupling, defined from the QCD heavy quark potential, provides a physical expansion parameter for perturbative QCD with an analytic dependence on the fermion masses which is now known to two-loop order. Conformal symmetry provides a template for QCD predictions, including relations between observables which are present even in a theory which is not scale invariant. Commensurate scale relations are perturbative QCD predictions based on conformal symmetry relating observable to observable at fixed relative scale. Such relations have no renormalization scale or scheme ambiguity.Comment: Lectures presented at the 12th Nuclear Physics Summer School and Symposium (NuSS'99) and 11th International Light-Cone School and Workshop, May 26-June 18, 1999, APCTP, Seoul, Kore

    Compressive PCA for Low-Rank Matrices on Graphs

    Get PDF
    We introduce a novel framework for an approxi- mate recovery of data matrices which are low-rank on graphs, from sampled measurements. The rows and columns of such matrices belong to the span of the first few eigenvectors of the graphs constructed between their rows and columns. We leverage this property to recover the non-linear low-rank structures efficiently from sampled data measurements, with a low cost (linear in n). First, a Resrtricted Isometry Property (RIP) condition is introduced for efficient uniform sampling of the rows and columns of such matrices based on the cumulative coherence of graph eigenvectors. Secondly, a state-of-the-art fast low-rank recovery method is suggested for the sampled data. Finally, several efficient, parallel and parameter-free decoders are presented along with their theoretical analysis for decoding the low-rank and cluster indicators for the full data matrix. Thus, we overcome the computational limitations of the standard linear low-rank recovery methods for big datasets. Our method can also be seen as a major step towards efficient recovery of non- linear low-rank structures. For a matrix of size n X p, on a single core machine, our method gains a speed up of p2/kp^2/k over Robust Principal Component Analysis (RPCA), where k << p is the subspace dimension. Numerically, we can recover a low-rank matrix of size 10304 X 1000, 100 times faster than Robust PCA

    Non-Negative Blind Source Separation Algorithm Based on Minimum Aperture Simplicial Cone

    Get PDF
    International audienceWe address the problem of Blind Source Separation (BSS) when the hidden sources are Nonnegative (N-BSS). In this case, the scatter plot of the mixed data is contained within the simplicial cone generated by the columns of the mixing matrix. The proposed method, termed SCSA-UNS for Simplicial Cone Shrinking Algorithm for Unmixing Non-negative Sources, aims at estimating the mixing matrix and the sources by fitting a Minimum Aperture Simplicial Cone (MASC) to the cloud of mixed data points. SCSA-UNS is evaluated on both independent and correlated synthetic data and compared to other N-BSS methods. Simulations are also performed on real Liquid Chromatography-Mass Spectrum (LC-MS) data for the metabolomic analysis of a chemical sample, and on real dynamic Positron Emission Tomography (PET) images, in order to study the pharmacokinetics of the [18F]-FDG (FluoroDeoxyGlucose) tracer in the brain

    Summing threshold logs in a parton shower

    Full text link
    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in αs\alpha_s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.Comment: 83 pages, 8 figure

    Interpretable Low-Rank Document Representations with Label-Dependent Sparsity Patterns

    Full text link
    In context of document classification, where in a corpus of documents their label tags are readily known, an opportunity lies in utilizing label information to learn document representation spaces with better discriminative properties. To this end, in this paper application of a Variational Bayesian Supervised Nonnegative Matrix Factorization (supervised vbNMF) with label-driven sparsity structure of coefficients is proposed for learning of discriminative nonsubtractive latent semantic components occuring in TF-IDF document representations. Constraints are such that the components pursued are made to be frequently occuring in a small set of labels only, making it possible to yield document representations with distinctive label-specific sparse activation patterns. A simple measure of quality of this kind of sparsity structure, dubbed inter-label sparsity, is introduced and experimentally brought into tight connection with classification performance. Representing a great practical convenience, inter-label sparsity is shown to be easily controlled in supervised vbNMF by a single parameter
    • …
    corecore