4,024 research outputs found

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    A Proposed Approach to Mechatronics Design and Implementation Education-Oriented Methodology

    Get PDF
    Mechatronics engineer is expected to design engineering systems with synergy and integration toward constrains like higher performance, speed, precision, efficiency, lower costs and functionality. The key element in success of a mechatronics engineering education-program, and correspondingly, Mechatronics engineering graduates, is directly related to a well-structured mechatronic system design course and the applied structural design methodology. Guidelines for structural design methodology and tools for the development process of mechatronic products, that can be applied in educational process is highly required. This paper proposes mechatronics systems design education-oriented methodology, which aims to integrate multidisciplinary knowledge, in various stages through the design process and development of mechatronics product. The proposed mechatronics design methodology is described, discussed and applied with the help of example student final year graduation project; design and implementation of mechatronics mobile robotic guidance system in the from of smart wheelchair- Mechatronics Motawif, to help and support people with disabilities and special needs to perform specific predetermined tasks, particularly, performing Al Omrah and motion around holy Kaba, Makka. Keywords: Mechatronics, Design methodology, Parallel design, Synergistic integration, Modeling/ Simulation, Prototyping, Mobile robot, Motawif

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    DESCRIPTIVE ATTRIBUTES OF ANALYSIS USE CASES IN THE DATA-DRIVEN VALIDATION OF ELEMENTS IN THE SYSTEM OF OBJECTIVES

    Get PDF
    Usage data of reference systems can be analyzed in the development process for the validation of system elements. The process model for data-driven validation of elements in the system of objectives aids developers in performing such data analyses. The conducted studies show that the basis for an efficient analysis process is a common understanding of the system and the goal of the analysis. Therefore, a template was derived over the course of case studies describing the elements in the system of objectives. The template covers the three descriptive dimensions general information, technical system and data. It allows a comprehensive description of analysis use cases. On average it takes 11 minutes for developers to aggregate all necessary information and consequently fill out the template. An A/B-Test confirmed the comprehensibility and applicability of the template even for developers of different domain knowledge. Through its contribution to a sustainable knowledge management the template provides an added value for the developers for conducting analysis

    Agile development for a multi-disciplinary bicycle stability test bench

    Get PDF
    Agile software development methods are used extensively in the software industry. This paper describes an argument to explain why these methods can be used within a multi-disciplinary project and provides a concrete description on how to implement such a method, using a case-study to support the rationale. The SOFIE (Intelligent Assisted Bicycle) project was created to develop mechatronic appliances to make bicycles more stable, i.e. safer. A bicycle stability test bench is created within this project and is used as the case study for this research. The relative complexity of the test bench development and partner structure within the SOFIE project has many similarities with large-scale complex projects found in industry. Thus it provides a good environment to research the application of Agile software methods to a multi-disciplinary project

    Norddesign 2012 - Book of Abstract

    Get PDF
    corecore