928 research outputs found

    Noise modelling, vibro-acoustic analysis, artificial neural networks on offshore platform

    Get PDF
    PhD ThesisDue to the limitations of the present noise prediction methods used in the offshore industry, this research is aimed to develop an efficient noise prediction technique that can analyze and predict the noise level for the offshore platform environment during the design stage as practically as possible to meet the criteria for crews’ comfort against high noise level. Several studies have been carried out to improve the understanding of acoustic environment onboard offshore platform, as well as the present prediction techniques. The noise prediction methods for the offshore platform were proposed from three aspects: by empirical acoustic modeling, analytical computation or neural network method. First, through evaluating the five-selected empirical acoustic models originated from other applications and statistical energy analaysis with direct field (SEA-DF), Heerema and Hodgson model was selected for calculating the sound level in the machinery room on the offshore platform. Second, the analytical model modeled three-dimensional fully coupled structural and acoustic systems by considering of the structural coupling force and the moment at edges, and structural-acoustic interaction on the interface. Artificial spring technique was implemented to illustrate the general coupling and boundary conditions. The use of Chebyshev expansions solutions ensured the accuracy and rapid convergence of the three-dimensional problem of single room and conjugate rooms. The proposed model was validated by checking natural frequencies and responses of against the results obtained from finite element software. Third, a modified multiple generalised regression neural network (GRNN) was first proposed to predict the noise level of various compartments onboard of the offshore platform with limited samples available. By preprocessing the samples with fuzzy c-means (FCM) and principal component analysis (PCA), dominant input features can be identified before commencing the GRNN’s training process. With optimal spread variables, the newly developed tool showed comparable performance to the SEA-DF and empirical formula that requires less time and resources to solve during the early stage of the offshore platform design.Singapore Economic Development Board (EDB) for providing the funding for the research under EDB-Industrial Postgraduate Programme (IPP) with SembCorp Marine in Singapore

    Interval and Fuzzy Computing in Neural Network for System Identification Problems

    Get PDF
    Increase of population and growing of societal and commercial activities with limited land available in a modern city leads to construction up of tall/high-rise buildings. As such, it is important to investigate about the health of the structure after the occurrence of manmade or natural disasters such as earthquakes etc. A direct mathematical expression for parametric study or system identification of these structures is not always possible. Actually System Identification (SI) problems are inverse vibration problems consisting of coupled linear or non-linear differential equations that depend upon the physics of the system. It is also not always possible to get the solutions for these problems by classical methods. Few researchers have used different methods to solve the above mentioned problems. But difficulties are faced very often while finding solution to these problems because inverse problem generally gives non-unique parameter estimates. To overcome these difficulties alternate soft computing techniques such as Artificial Neural Networks (ANNs) are being used by various researchers to handle the above SI problems. It is worth mentioning that traditional neural network methods have inherent advantage because it can model the experimental data (input and output) where good mathematical model is not available. Moreover, inverse problems have been solved by other researchers for deterministic cases only. But while performing experiments it is always not possible to get the data exactly in crisp form. There may be some errors that are due to involvement of human or experiment. Accordingly, those data may actually be in uncertain form and corresponding methodologies need to be developed. It is an important issue about dealing with variables, parameters or data with uncertain value. There are three classes of uncertain models, which are probabilistic, fuzzy and interval. Recently, fuzzy theory and interval analysis are becoming powerful tools for many applications in recent decades. It is known that interval and fuzzy computations are themselves very complex to handle. Having these in mind one has to develop efficient computational models and algorithms very carefully to handle these uncertain problems. As said above, in general we may not obtain the corresponding input and output values (experimental) exactly or in crisp form but we may have only uncertain information of the data. Hence, investigations are needed to handle the SI problems where data is available in uncertain form. Identification methods with crisp (exact) data are known and traditional neural network methods have already been used by various researchers. But when the data are in uncertain form then traditional ANN may not be applied. Accordingly, new ANN models need to be developed which may solve the targeted uncertain SI problems. Hence present investigation targets to develop powerful methods of neural network based on interval and fuzzy theory for the analysis and simulation with respect to the uncertain system identification problems. In this thesis, these uncertain data are assumed as interval and fuzzy numbers. Accordingly, identification methodologies are developed for multistorey shear buildings by proposing new models of Interval Neural Network (INN) and Fuzzy Neural Network (FNN) models which can handle interval and fuzzified data respectively. It may however be noted that the developed methodology not only be important for the mentioned problems but those may very well be used in other application problems too. Few SI problems have been solved in the present thesis using INN and FNN model which are briefly described below. From initial design parameters (namely stiffness and mass in terms of interval and fuzzy) corresponding design frequencies may be obtained for a given structural problem viz. for a multistorey shear structure. The uncertain (interval/fuzzy) frequencies may then be used to estimate the present structural parameter values by the proposed INN and FNN. Next, the identification has been done using vibration response of the structure subject to ambient vibration with interval/fuzzy initial conditions. Forced vibration with horizontal displacement in interval/fuzzified form has also been used to investigate the identification problem. Moreover this study involves SI problems of structures (viz. shear buildings) with respect to earthquake data in order to know the health of a structure. It is well known that earthquake data are both positive and negative. The Interval Neural Network and Fuzzy Neural Network model may not handle the data with negative sign due to the complexity in interval and fuzzy computation. As regards, a novel transformation method have been developed to compute response of a structural system by training the model for Indian earthquakes at Chamoli and Uttarkashi using uncertain (interval/fuzzified) ground motion data. The simulation may give an idea about the safety of the structural system in case of future earthquakes. Further a single layer interval and fuzzy neural network based strategy has been proposed for simultaneous identification of the mass, stiffness and damping of uncertain multi-storey shear buildings using series/cluster of neural networks. It is known that training in MNN and also in INN and FNN are time consuming because these models depend upon the number of nodes in the hidden layer and convergence of the weights during training. As such, single layer Functional Link Neural Network (FLNN) with multi-input and multi-output model has also been proposed to solve the system identification problems for the first time. It is worth mentioning that, single input single output FLNN had been proposed by previous authors. In FLNN, the hidden layer is replaced by a functional expansion block for enhancement of the input patterns using orthogonal polynomials such as Chebyshev, Legendre and Hermite, etc. The computations become more efficient than the traditional or classical multi-layer neural network due to the absence of hidden layer. FLNN has also been used for structural response prediction of multistorey shear buildings subject to earthquake ground motion. It is seen that FLNN can very well predict the structural response of different floors of multi-storey shear building subject to earthquake data. Comparison of results among Multi layer Neural Network (MNN), Chebyshev Neural Network (ChNN), Legendre Neural Network (LeNN), Hermite Neural Network (HNN) and desired are considered and it is found that Functional Link Neural Network models are more effective and takes less computation time than MNN. In order to show the reliability, efficacy and powerfulness of INN, FNN and FLNN models variety of problems have been solved here. Finally FLNN is also extended to interval based FLNN which is again proposed for the first time to the best of our knowledge. This model is implemented to estimate the uncertain stiffness parameters of a multi-storey shear building. The parameters are identified here using uncertain response of the structure subject to ambient and forced vibration with interval initial condition and horizontal displacement also in interval form

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Air quality in London: evidence of persistence, seasonality and trends.

    Get PDF
    The poor air quality in the London metropolis has sparked our interest in studying the time series dynamics of air pollutants in the city. The dataset consists of roadside and background air quality for seven standard pollutants: nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter (PM10 and PM2.5) and sulphur dioxide (SO2), using fractional integration to investigate issues such as persistence, seasonality and time trends in the data. Though we notice a large degree of heterogeneity across pollutants and a persistent behaviour based on a long memory pattern is observed practically in all cases. Seasonality and decreasing linear trends are also found in some cases. The findings in the paper may serve as a guide to air pollution management and European Union (EU) policymakers.pre-print455 K

    NEURO-MECHANICAL METHODS OF CONTROL AND DIAGNOSTICS OF THE TECHNICAL STATE OF AIRCRAFT ENGINE TV3-117 IN FILM REGIONS

    Get PDF
     Предметом дослідження в статті є режими роботи авіаційного двигуна ТВ3-117 та методи їх контролю і діагностики. Мета роботи – розробка методів контролю і діагностики технічного стану авіаційного двигуна ТВ3-117 на основі нейромережевих технологій у режимі реального часу. В статті вирішуються наступні завдання: обґрунтування передумов застосування нейронних мереж у задачі контролю і діагностики технічного стану авіаційного двигуна ТВ3-117, побудова узагальненої нейронної мережі та вибір алгоритму її навчання, розв’язок задачі контролю параметрів технічного стану авіаційного двигуна ТВ3-117 із застосуванням нейронних мереж. Використовуються такі методи: методи теорії ймовірностей і математичної статистики, методи нейроінформатики, методи теорії інформаційних систем та обробки даних. Отримано наступні результати: Обґрунтовано доцільність застосування нейронних мереж у задачі контролю і діагностики технічного стану авіаційного двигуна ТВ3-117. Обґрунтовано доцільність розробки нейронних мереж на базі на базі нейрорегулятора NN Predictive Controller. Обґрунтовано доцільність застосування градієнтного методу навчання нейронних мереж, а також розроблено метод навчання нейрорегулятора на основі нейромодулятора із застосуванням методу зворотного поширення помилки. Отримано розв’язок задачі контролю параметрів технічного стану авіаційного двигуна ТВ3-117, який підтверджує доцільність застосування нейронних мереж у задачі контролю і діагностики технічного стану авіаційного двигуна ТВ3-117. Висновки: Застосування нейромережевих технологій э ефективним при розв’язку широкого кола погано формалізованих задач, однією з яких є задача контролю технічного стану авіаційного двигуна ТВ3-117. Перевагою нейронних мереж при їх застосуванні у задачах контролю і діагностики технічного стану авіаційного двигуна ТВ3-117 є можливість роботи з малими навчальними вибірками, призначенням м’яких допусків, використанням досвіду експертів для оцінки технічного стану авіаційного двигуна ТВ3-117, що є важливим в умовах неповноти інформації.Ключові слова: авіаційний двигун, нейронна мережа, технічний стан, контроль і діагностикаThe subject of the study in the article is the modes of operation of the aircraft engine TV3-117 and methods of their control and diagnostics.  The purpose of the work is to develop methods of control and diagnostics of the technical condition of the aircraft engine TV3-117 on the basis of neural network technologies in real time.  The following tasks are solved: substantiation of the preconditions of the use of neural networks in the task of control and diagnostics of the technical condition of the aircraft engine TV3-117, construction of the generalized neural network and the choice of the algorithm for its training, the solution of the task of controlling the parameters of the technical condition of the aircraft engine TV3-117 with the use of neural networks.  The following methods are used: methods of probability theory and mathematical statistics, methods of neuroinformatics, methods of the theory of information systems and data processing.  The following results were obtained: The feasibility of using neural networks in the task of controlling and diagnosing the technical condition of the aircraft engine TV3-117 was substantiated.  The expediency of developing neural networks based on the NN Predictive Controller. The expediency of using the gradient method of teaching neural networks is substantiated, as well as the method of training a neuro-regulator based on a neuro-modulator with the use of the method of reverse error propagation.  The expediency of using the gradient method of teaching neural networks is substantiated, as well as the method of training a neuro-regulator based on a neuro-modulator with the use of the method of reverse error propagation. The solution of the task of controlling the parameters of the technical condition of the aircraft engine ТВ3-117, which confirms the expediency of using neural networks in the task of control and diagnostics of the technical condition of the aircraft engine TV3-117, is obtained. Conclusions: The application of neural network technologies is effective in solving a wide range of poorly formalized tasks, one of which is the task of controlling the technical condition of the aircraft engine TV3-117. The advantage of neural networks in their application in the tasks of control and diagnostics of the technical condition of the aircraft engine TV3-117 is the possibility of working with small training samples, the appointment of soft tolerances, using the experience of experts to assess the technical condition of the aircraft engine TV3-117, which is important in the condition’s information incompleteness.Keywords: engine, neural network, technical condition, control and diagnosi
    corecore