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Abstract 

Increase of population and growing of societal and commercial activities with limited 

land available in a modern city leads to construction up of tall/high-rise buildings. As 

such, it is important to investigate about the health of the structure after the occurrence of 

manmade or natural disasters such as earthquakes etc. A direct mathematical expression 

for parametric study or system identification of these structures is not always possible. 

Actually System Identification (SI) problems are inverse vibration problems consisting of 

coupled linear or non-linear differential equations that depend upon the physics of the 

system. It is also not always possible to get the solutions for these problems by classical 

methods. Few researchers have used different methods to solve the above mentioned 

problems. But difficulties are faced very often while finding solution to these problems 

because inverse problem generally gives non-unique parameter estimates. To overcome 

these difficulties alternate soft computing techniques such as Artificial Neural Networks 

(ANNs) are being used by various researchers to handle the above SI problems. It is 

worth mentioning that traditional neural network methods have inherent advantage 

because it can model the experimental data (input and output) where good mathematical 

model is not available. Moreover, inverse problems have been solved by other researchers 

for deterministic cases only. But while performing experiments it is always not possible to 

get the data exactly in crisp form. There may be some errors that are due to involvement 

of human or experiment. Accordingly, those data may actually be in uncertain form and 

corresponding methodologies need to be developed. 

It is an important issue about dealing with variables, parameters or data with 

uncertain value. There are three classes of uncertain models, which are probabilistic, 

fuzzy and interval. Recently, fuzzy theory and interval analysis are becoming powerful 

tools for many applications in recent decades. It is known that interval and fuzzy 

computations are themselves very complex to handle. Having these in mind one has to 

develop efficient computational models and algorithms very carefully to handle these 

uncertain problems. 

 As said above, in general we may not obtain the corresponding input and output 

values (experimental) exactly or in crisp form but we may have only uncertain 

information of the data. Hence, investigations are needed to handle the SI problems where 

data is available in uncertain form. Identification methods with crisp (exact) data are 

known and traditional neural network methods have already been used by various 

researchers. But when the data are in uncertain form then traditional ANN may not be 

applied. Accordingly, new ANN models need to be developed which may solve the 

targeted uncertain SI problems. Hence present investigation targets to develop powerful 

methods of neural network based on interval and fuzzy theory for the analysis and 
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simulation with respect to the uncertain system identification problems. In this thesis, 

these uncertain data are assumed as interval and fuzzy numbers. Accordingly, 

identification methodologies are developed for multistorey shear buildings by proposing 

new models of Interval Neural Network (INN) and Fuzzy Neural Network (FNN) models 

which can handle interval and fuzzified data respectively.  It may however be noted that 

the developed methodology not only be important for the mentioned problems but those 

may very well be used in other application problems too. Few SI problems have been 

solved in the present thesis using INN and FNN model which are briefly described below. 

From initial design parameters (namely stiffness and mass in terms of interval and 

fuzzy) corresponding design frequencies may be obtained for a given structural problem 

viz. for a multistorey shear structure. The uncertain (interval/fuzzy) frequencies may then 

be used to estimate the present structural parameter values by the proposed INN and 

FNN. Next, the identification has been done using vibration response of the structure 

subject to ambient vibration with interval/fuzzy initial conditions. Forced vibration with 

horizontal displacement in interval/fuzzified form has also been used to investigate the 

identification problem.  

Moreover this study involves SI problems of structures (viz. shear buildings) with 

respect to earthquake data in order to know the health of a structure. It is well known that 

earthquake data are both positive and negative. The Interval Neural Network and Fuzzy 

Neural Network model may not handle the data with negative sign due to the complexity 

in interval and fuzzy computation. As regards, a novel transformation method have been 

developed to compute response of a structural system by training the model for Indian 

earthquakes at Chamoli and Uttarkashi using uncertain (interval/fuzzified) ground motion 

data. The simulation may give an idea about the safety of the structural system in case of 

future earthquakes. Further a single layer interval and fuzzy neural network based strategy 

has been proposed for simultaneous identification of the mass, stiffness and damping of 

uncertain multi-storey shear buildings using series/cluster of neural networks.  

It is known that training in MNN and also in INN and FNN are time consuming 

because these models depend upon the number of nodes in the hidden layer and 

convergence of the weights during training. As such, single layer Functional Link Neural 

Network (FLNN) with multi-input and multi-output model has also been proposed to 

solve the system identification problems for the first time. It is worth mentioning that, 

single input single output FLNN had been proposed by previous authors. In FLNN, the 

hidden layer is replaced by a functional expansion block for enhancement of the input 

patterns using orthogonal polynomials such as Chebyshev, Legendre and Hermite, etc. 

The computations become more efficient than the traditional or classical multi-layer 

neural network due to the absence of hidden layer. FLNN has also been used for structural 

response prediction of multistorey shear buildings subject to earthquake ground motion. It 

is seen that FLNN can very well predict the structural response of different floors of 
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multi-storey shear building subject to earthquake data. Comparison of results among 

Multi layer Neural Network (MNN), Chebyshev Neural Network (ChNN), Legendre 

Neural Network (LeNN), Hermite Neural Network (HNN) and desired are considered and 

it is found that Functional Link Neural Network models are more effective and takes less 

computation time than MNN. 

  

In order to show the reliability, efficacy and powerfulness of INN, FNN and 

FLNN models variety of problems have been solved here. Finally FLNN is also extended 

to interval based FLNN which is again proposed for the first time to the best of our 

knowledge. This model is implemented to estimate the uncertain stiffness parameters of a 

multi-storey shear building. The parameters are identified here using uncertain response 

of the structure subject to ambient and forced vibration with interval initial condition and 

horizontal displacement also in interval form.  
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Chapter 1 

Introduction 

Different structures such as buildings, bridges, monuments etc get exposed to various 

natural phenomena like winds or earthquakes. After long period of excitation caused due 

to these natural distresses, the structures deteriorate losing its original designed behaviour 

which results change in structural as well as materialistic properties. These structural 

properties or parameters are natural frequencies, stiffness, mode shapes etc. Changes in 

structural parameters should be detected and estimated for safety of the structures. Hence, 

structural health monitoring like estimation of parameters is essential to know the present 

health/condition of the structure. Structural dynamic problems are generally of two types, 

direct and inverse problems. In direct problems, the equations governing the system and 

the parameters of the system are known. These parameters are used to find the response of 

the system for a specific input. In inverse problems, the output response for a given input 

is known, but either the governing equation or some of the parameters of the system are 

unknown.  

 

Dynamic behaviour of complicated systems often needs to be investigated by 

System Identification (SI), since it usually has to meet certain requirements. In general, the 

system identification problems are the inverse (vibration) problems whose solutions are 

sometimes not unique and difficult to handle by direct computational and mathematical 

models. Rapid progress in the field of computer science and computational mathematics 

during recent decades has led to an increasing use of computers and efficient models to 

analyze, supervise and control technical processes. The use of computers and efficient 

mathematical tools allow identification of the process dynamics by evaluating the input 

and output signals of the system. Result of such process identification is usually a 

mathematical model by which the dynamic behaviour can be estimated or predicted. 

Modal-parameter SI and physical parameter SI are two major branches in SI. SI 

techniques are also applied to determine vibration characteristics, modal shapes, damping 

ratios and structural response of complex structural system so as to frame knowledge for 

modelling and assessing current design procedures. In System Identification, mathematical 

models need to be developed for a physical system from given experimental data. With the 

help of a model, the engineers would able to locate and detect the damage in the 
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structures. It is becoming an interesting field of research and has attracted many 

researchers in recent decades. 

 

It may be noted that direct mathematical expression for parametric study of 

structures is not always possible. The governing equations of inverse vibration problems 

are generally coupled linear or nonlinear differential equations that depend upon the 

physical model of the structure. Again, it is not always possible to get the solutions for 

above mentioned problems using classical methods. As such alternate soft computing 

methods like Artificial Neural Networks (ANNs) are being used in recent years to handle 

the above problems. It is well known that traditional neural network methods have 

inherent advantage because it can model the experimental data where good mathematical 

model is not available. Although, in order to train neural network for SI problems we 

require experimental data. Further, it may not be always possible to get the data in exact or 

crisp form due to the errors and uncertainty involved while experimenting. Hence 

investigations are needed to handle the SI problems where data in uncertain form may be 

available. In this investigation, uncertainty has been considered as interval and fuzzy. As 

such, the study involves to solve the related differential equations by developing interval 

and fuzzy neural network model which can handle uncertain data. On the other hand, 

traditional multilayer neural network usually takes more time for computing. Accordingly, 

functional link neural network has been developed to solve the above said problems in 

order to have less computation time. The main objective of the present investigation is to 

solve system identification problems of structural dynamics viz. that of multistory shear 

buildings using interval, fuzzy and functional link neural network models. Some studies 

and research have already been done in SI using various methods. Based on these methods 

the literature survey has been categorized as below: 

 

 SI Based on Probabilistic, Model Updating, Eigenvalue and Other Numerical 

Approach; 

 Damage Detection Using SI Techniques; 

 Artificial Neural Network Approach to SI Problems; 

 Damage Detection Based on ANN Models; 

 Interval Neural Network (INN) Models; 

 Fuzzy Neural Network (FNN) Models; 

 Functional Link Neural Network (FLNN) Models. 
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1.1 Literature Review 
 

1.1.1 SI Based on Probabilistic, Model Updating, Eigenvalue and Other 

Numerical Approach 
 

Different techniques for improving structural dynamic models were surveyed in review 

papers like Bekey [1], Hart and Yao [2], Ibanez [3], Sinha and Kuszta [4], Datta et al. [5]. 

Kerschen et al. [6] discussed about the current status and future direction of nonlinear 

system identification problems in structural dynamics. Review paper related to vibration 

based damage identification methods has been written by Fan and Qiao [7]. Recently Sirca 

and Adeli [8] presented a very interesting and important review report on state of the art of 

system identification in structural engineering. Great amount of research in SI using 

different methods has been conducted. Some research and related works on SI may be 

stated as Masri et al. [9], Natke [10]. Zhao et al. [11] proposed a localized identification 

approach through substructuring in the frequency domain. The proposed approach can be 

used to identify the structural parameters in any part of interest in a structure. System 

identification technique for detecting changes in both linear and non-linear structural 

parameters has been given by Loh and Tou [12]. Yuan et al. [13] identified the structural 

mass and stiffness matrices of shear buildings from test data. Udwadia and Proskurowski 

[14] used an associative memory approach to identify the properties of structural and 

mechanical systems. Parameter identification of different structures and buildings using 

varies procedures has been studied by few authors. Sanayei et al. [15] introduced a new 

error function to use natural frequencies and associated mode shapes which is measured at 

a selected subset of degrees of freedom for stiffness and mass parameter estimation at 

element level. The eigenspace structural identification technique for tall buildings 

subjected to ambient excitations was introduced by Quek et al. [16]. Huang [17] identified 

structural parameters from ambient vibration using multivariate AR model. Koh et al. [18] 

proposed several GA based substructural identification methods, which work by solving 

parts of the structure at a time to improve the convergence of mass and stiffness estimates 

particularly for large systems. Reliable and stable method for simultaneous identification 

of stiffness-damping of shear type buildings have been developed by Takewaki and 

Nakamura [19] using stationary random records under limited observation. An innovative 

algorithm based on probabilistic approach is developed by Lei et al. [20] for damage 

identification considering measurement noise uncertainties. The probability of identified 

structural damage is further derived based on the reliability theory. 
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Dynamic behaviour of structures can be studied analytically, numerically and/or 

experimentally. Though different methods are used to study the dynamic behaviour, each 

method has its own advantages and limitations. In order to reconciliate these limitations or 

short comings and to determine the dynamic properties of a structure, model correlation 

and model updating procedure/method should be performed. Model updating refers to the 

methodology that determines the most plausible structural model for an instrumented 

structural system. In this regard, few papers may be mentioned on model updating of 

structural systems as Friswell and Mottershead [21], Fassois and Sakellariou [22]. State 

space-based structural identification theory, its implementation and applications has been 

presented by Alvin et al. [23]. Yu et al. [24] formulated and improved a finite element 

model-updating method for parameter identification of framed structures. Modal updating 

is studied on various structures but most widely studied structural systems are the shear 

buildings. Previous works state that model updating of shear buildings depend mostly on 

the use of modal parameter identification and physical or structural parameter 

identification to drive the corresponding update procedures. Since eigen mode data are 

obtainable from the established modal testing techniques and eigen modes contain a large 

amount of information about the structure in compact form, modal parameter data such as 

mode shapes, damping ratios and frequencies have been frequently used in modal updating 

of the structural systems, Bhat [25], Lu and Tu [26], Perry et al. [27]. Brownjohn [28] used 

modal analysis procedure, Natural Excitation Technique with Eigensystem Realization 

Algorithm and frequency domain decomposition (or IPP) to study ambient vibration in tall 

buildings. Method was developed by Mahmoudabadi et al. [29] for parametric system 

identification for a classically damped linear system using frequency domain and extended 

their work for non-classically damped linear systems subjected to six components of 

earthquake ground motions. Tang et al. [30] utilized a differential evolution (DE) strategy 

for parameter estimation of the structural systems with limited output data, noise polluted 

signals, and no prior knowledge of mass, damping, or stiffness matrices. Nandakumar and 

Shankar [31] presented a novel inverse scheme based on consistent mass transfer matrix to 

identify the stiffness parameters of structural members. They used a non-classical heuristic 

particle swarm optimization algorithm (PSO). Billmaier and Bucher [32] discussed 

selective sensitivity analysis and used this method to solve system identification problems. 
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Different numerical methodologies have been used by researchers to study system 

identification problems, Muthukumaran et al. [33], Lagaros et al. [34]. Identification of 

physical parameters such as mass, damping and stiffness matrices of linear structures has 

been studied by Yang et al. [35] based on Hilbert–Huang spectral analysis. Procedure 

which systematically modifies and identifies the structural parameters using the prior 

known estimates of the parameters with the corresponding vibration characteristics and the 

known dynamic data is given by Chakraverty [36]. Nicoud et al. [37] presented a system 

identification methodology that explicitly treats factors which affect the success of 

identification. Chakraverty [38] used Holzer criteria along with some other numerical 

methods to estimate the global mass and stiffness matrices of the structure from modal test 

data. Physical parameter system identification methods to determine the stiffness and 

damping matrices of shear-storey buildings have been proposed by Yoshitomi and 

Takewaki [39]. A two-stage Kalman estimator approach is proposed by Lie and Jiang [40] 

for identification of nonlinear structural parameters under limited acceleration output 

measurements. Structural parameter identification algorithm using additional known 

masses has been presented by Dinh et al. [41]. Beskhyroun et al. [42] investigated the 

dynamic behaviour of a full scale 13-storey-reinforced concrete building under forced 

vibration, ambient vibration and distal earthquake excitation. Modal parameter 

identification approaches and damage diagnosis methods based on Hilbert Huang 

transform (HHT) are proposed by Jianping et al. [43]. Wang et al. [44] used extended 

Kalman filter method for identification of structural stiffness parameters. Cho et al. [45] 

presented the decentralized system identification using stochastic subspace identification 

(SSI) for wireless sensor networks (WSNs). 

 

1.1.2 Damage Detection Using SI Techniques 
 

One of the most frightening and destructive phenomena of nature is a severe earthquake 

and its terrible after effects. An earthquake is the sudden, rapid shaking of the earth caused 

by the breaking and shifting subterranean rock as it releases stress that has accumulated 

over a long time. Earthquakes are one of the most costly natural hazards faced by the 

world posing a significant risk to the public safety. The risks that earthquakes pose to 

society, including death, injury and economic loss, can be greatly reduced by better 

planning, construction, mitigation practices before earthquakes happen, providing critical 

and timely information to improve response after they occur. There is no way to stop these 
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natural phenomena, but seismologists have several methods so that they can estimate 

approximately or predict future earthquake events. By studying the amount of earthquakes 

and the time that they happen in a certain area, seismologist can then guess the probability 

of another earthquake occurring in the area within a given time. This will certainly give an 

idea to people about the time period of the occurrence of the next earthquake, so that they 

can prepare themselves for another possible quake. The prediction of the real earthquake 

ground motion at a particular building site is very complex and difficult. Earthquakes 

usually occur without warning. So, protection of cultural heritage against the effect of 

earthquake is an interdisciplinary research where the knowledge, skills and experience of 

earthquake along with structuralengineers assisted by architects, art historians and material 

scientists are required. Health monitoring, SI, theoretical and experimental assessment of 

structural performance, design, testing and implementation of retrofit are some of the main 

steps of any modern earthquake protection methodology for conservation of cultural 

heritage. As such after a long span of time, the historical or other structures deteriorate due 

to application of various man-made and natural hazards. So, it is a challenging task to 

know the present health of the above structures to avoid failure. 

 

SI techniques play an important role in investigating and reducing gaps between the 

structural systems and their structural design models. This is also true in structural health 

monitoring for damage detection. SI techniques are also used in damage detection. Works 

related to structural damage detection using different methods were given by Angeles and 

Alvarez-Icaza [46], Niu [47]. Non-parametric structural damage detection methodology 

based on non-linear system identification approaches has been given by Masri et al. [48] 

for health monitoring of structure-unknown systems. Kao and Hung [49] gave two steps 

for structural damage detection. The first step involves system identification using neural 

system identification networks (NSINs) to identify the undamaged and damaged states of 

a structural system and the second step involves structural damage detection using the 

aforementioned trained NSINs to generate free vibration responses with the same initial 

condition or impulsive force. Several studies have already been done to identify structural 

parameters with the help of seismic response data. Procedure for nonlinear system 

identification using prediction error identification method with state-space description is 

presented in Furukawa et al. [50]. Modified random decrement method together with the 

Ibrahim time domain technique has been used by Lin et al. [51] to evaluate the modal 

frequencies, damping ratios and mode shapes of an asymmetric building. Pillai and 



 

 

 

7 

 

Krishnapillai [52] presented a multistage identification scheme for structural damage 

detection with the use of modal data using a hybrid neural network strategy. Wang and 

Cui [53] proposed a two-step method for simultaneous identification of structural 

parameters with unknown ground motion. Hegde and Sinha [54] proposed an efficient 

procedure to determine the natural frequencies, modal damping ratios and mode shapes for 

torsionally coupled shear buildings using earthquake response records The procedure 

applies eigenrealization algorithm to generate the state-space model of the structure using 

the cross-correlations among the measured responses. Methodology for identification of 

state-space models of a building structure using time histories of the earthquake-induced 

ground motion and of the corresponding structural responses is presented by Hong et al. 

[55]. Zhang et al. [56] proposed a probabilistic method to identify damages of the 

structures with uncertainties under unknown input. The proposed probabilistic method is 

developed from a deterministic simultaneous identification method of structural physical 

parameters and input based on dynamic response sensitivity. 

 

Structural parameter identification and damage detection approach using 

displacement measurement time series has been given by Xu et al. [57]. Xu et al. [58] 

proposed a new computational method based on linear and nonlinear regression analysis 

technique, for identification of the linear and nonlinear physical parameters of base-

isolated multi-storey buildings using earthquake records. Ebrahimian and Todorovska [59] 

introduced a non uniform Timoshenko beam model of a high rise building with piecewise 

constant properties along with an algorithm for system identification from earthquake 

records. Zhou et al. [60] investigated a simple method for physical parameters 

identification of a nonlinear hysteretic structure with pinching behaviour from seismic 

response data. New near real time hybrid frame work for system identification of 

structures dealing with data streaming from a structural health monitoring (SHM) system 

is proposed by Guo et al. [61]. Derras and Bekkouche [62] used the feed-forward artificial 

neural network method (ANN) with a conjugate gradient back-propagation rule to estimate 

the maximum Peak Ground Acceleration (PGA) of the three components (vertical, east-

west and north-south). A novel adaptive scheme is presented by Lagaros and Papadrakakis 

[63] in order to predict the dynamic behaviour of structural systems under earthquake 

loading condition. Zamani et al. [64] used artificial neural network to train the responses 

of structural systems for a particular earthquake. Robles and Hernandez-Becerril [65] 

created a seismic alert system which is based on artificial neural networks and genetic 
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algorithms. Application of the artificial neural network (ANN) to predict pseudo spectral 

acceleration or peak ground acceleration is explored in the studies of Hong et al. [66]. 

Ramhormozian et al. [67] used artificial neural network method to predict principal 

ground motion parameters for quick post-earthquake damage assessment of bridges. 

 

1.1.3 Artificial Neural Network (ANN) Approach to SI Problems 
 

Generally when the systems are modeled as linear identification problem, it often turns out 

to be a non-linear optimization problem. This requires an intelligent iterative scheme to 

have the required solution. There exist various online and offline methods, namely the 

Gauss-Newton, Kalman filtering and probabilistic methods such as maximum likelihood 

estimation etc. However, the identification problems for large number of parameters, 

following two basic difficulties are faced often: 

a) Objective function surface may have multiple maxima and minima and the 

convergence to the correct parameters is possible only if the initial guess is considered 

as close to the parameters to be identified. 

b) Inverse problem, in general gives non-unique parameter estimates. 

 

To overcome these difficulties, various researchers have proposed identification 

methodologies for the said problems using powerful technique of Artificial Neural 

Network (ANN) models. Artificial Neural Network (ANN) is a class of mathematical 

algorithm inspired by biological nervous system. This is one of the popular areas in the 

mathematics of artificial intelligence research and based on organizational structure of 

human brain. ANN is a powerful computational approach which depends upon various 

parameters and learning methods. In recent years, artificial neural networks have been 

used widely in various fields of engineering and science. ANN is mathematical processes 

by which one may study pattern learn tasks and solve complex problems like 

identification, function approximation, clustering and predication etc.ANN is a field which 

is growing from the last few decades, so an enormous amount of literature has been 

written on the topic of Artificial Neural Networks which helps to solve system 

identification problems. As regards few research works are reviewed and cited here for 

better understanding of the problems. 

 

ANNs provide a fundamentally different approach to SI problems. They have been 

successfully applied for identification and control of dynamic systems in various fields of 

engineering because of its excellent learning capacity and high tolerance to partially 
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inaccurate data. A number of studies namely Kosmatopoulos et al. [68], Lagaros and 

Papadrakakis [69] and the references mentioned below have used ANN for solving 

structural identification problems. Yun and Bahng [70] proposed a neural network-based 

substructural identification for the estimation of the stiffness parameters of a complex 

structural system, particularly for the case with noisy and incomplete measurement of the 

modal data. Decentralized stiffness identification method with neural networks for a multi-

degree of freedom structure has been developed by Wu et al. [71]. Neural network-based 

strategy was developed for direct identification of structural parameters from the time-

domain dynamic responses of a structure without any eigenvalue analysis by Xu et al. 

[72]. Neural network-based method to determine the modal parameters of structures from 

field measurement data was given by Chen [73]. Procedure for identification of structural 

parameters of two-storey shear buildings by an iterative training of neural networks was 

proposed by Chakraverty [74]. System identification of an actively controlled structure 

using frequency response functions with the help of ANNs has also been studied by 

Pizano [75] for single-input, single-output and multiple-input single-output system. Soft 

computing methods for model updating of multi storey shear buildings for simultaneous 

identification of mass, stiffness and damping matrices have been investigated by 

Khanmirza et al. [76]. Facchini et al. [77] presented an artificial neural network based 

technique for the output-only modal identification of structural systems. Khanmirza et al. 

[78] gave a novel method based on ANN for simultaneous identification of physical 

parameters as well as separation of linear physical parameters from the nonlinear ones, for 

nonlinear multi-DOF systems. 

 

1.1.4 Damage Detection Based on ANN Models 
 

Artificial Neural Network (ANN) has gradually been established as a powerful tool in 

various fields. ANN has recently been applied to assess damage in structures. In this 

regards lots of works in structural health monitoring and damage detection using ANN 

have been done by various researchers. Back-propagation neural network (BPN) to 

elucidate damage states in a three-storey frame by numerical simulation has been studied 

by Wu et al. [79]. Conte et al. [80] gave a neural network based approach to model the 

seismic response of multi-storey frame buildings. Pandey and Barai [81] detected damage 

in a bridge truss by applying ANN to numerically simulated data. Counter-propagation 

neural network (NN) to locate damage in beams and frames has been studied by Zhao et 
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al. [82]. Localized damage detection and parametric identification method with direct use 

of earthquake responses for large scale infrastructures have also been proposed by Xu et 

al. [83]. Other advanced studies which include application of neural network techniques 

for damage detection have been cited here. Novel procedure for identifying dynamic 

characteristics of a building from seismic response data using NN model has been given 

by Huang et al. [84]. Mathur et al. [85] used feed forward, multilayer, supervised neural 

network with error back propagation algorithm to predict responses of typical rural house 

subject to earthquake motions. Chakraverty et al. [86] used artificial neural network model 

to compute response of structural system by training the model for a particular earthquake. 

An approach to detect structural damage using ANN method with progressive substructure 

zooming has been presented by Bakhary et al. [87]. This method also uses the substructure 

technique together with a multi-stage ANN models to detect the location and extent of the 

damage. Zhang et al. [88] studied the application of neural networks to damage detection 

in structures. In order to simulate and estimate structural response of two-storey shear 

building by training the model for a particular earthquake using the powerful technique of 

artificial neural network models has been presented by Chakraverty et al. [89]. Oliva and 

Pichardo [90] introduced new methods for seismic hazard evaluation in a geographic area. 

Kerh et al. [91] gave neural network approach for analyzing seismic data to identify 

potentially hazardous bridges. Application of neural network model for earthquake 

prediction in East China has been presented by Xie et al. [92].  

The application of ANNs and wavelet analysis to develop an intelligent and 

adaptive structural damage detection system has been investigated by Shi and Yu [93]. 

Aghamohammadi et al. [94] used neural network to model and to estimate the severity and 

distribution of human loss as a function of building damage in the earthquake disaster in 

Iran. Application of neural networks in bridge health prediction based on acceleration and 

displacement data domainhave been given by Suryanita and Adnan [95]. Reyes et al. [96] 

applied artificial neural networks, to predict earthquakes in Chile. Niksarlioglu and 

Kulahci [97] determined the relationships between radon emissions based on the 

environmental parameters and earthquakes occurring along the East Anatolian Fault Zone 

(EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural 

network (ANN) model. An optimized set of seismicity parameters for earthquake 

prediction has been obtained by Alvarez et al. [98]. Hakim et al. [99] developed an 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and ANNs technique to identify 
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damage in a model steel girder bridge using dynamic parameters. To highlight the recent 

trends in earthquake abnormality detection, including various ideas and applications, in the 

field of Neural Networks, valid papers related to ANNs are reviewed and presented by 

Sriram et al. [100]. It may be seen from the above that artificial neural networks (ANNs) 

provide a fundamentally different approach to system identification and dynamic 

problems. 

 

1.1.5 Interval Neural Network (INN) Models 
 

It is revealed from the above literature review that various authors developed different 

identification methodologies using ANN. They supposed that the data obtained are in 

exact or crisp form. But in actual practice the experimental data obtained from equipments 

are with errors that may be due to human or equipment error thereby giving uncertain form 

of the data along with uncertain structural parameters. In view of the above, some studies 

have been done by using Interval Neural Networks (INNs) and Fuzzy Neural Networks 

(FNNs) in different fields. Ishibuchi and Tanaka [101] extended the back-propagation 

algorithm to the case of interval input vectors. A new architecture of neural networks with 

interval weights and interval bias and its learning algorithm has been discussed by 

Ishibuchi et al. [102]. Kwon et al. [103] gave three approaches to the learning of neural 

networks that realize nonlinear mappings of interval vectors. Beheshti et al. [104] defined 

interval neural network and categorized general three-layer neural network training 

problems into two types that is type1 and type2 according to their mathematical model. 

Using these general algorithms one can develop specific software which can efficiently 

solve interval weighted neural network problems. Garczarczyk [105] studied a four layer 

feed forward network considering interval weights and interval biases. Escarcina et al. 

[106] developed interval computing in neural network which is based on one layer interval 

neural network. Application of interval valued neural networks to a regression problem 

has been presented by Chetwynd et al. [107]. Their work was concerned with exploiting 

uncertainty in order to develop a robust regression algorithm for a pre-sliding friction 

process based on a nonlinear Auto-Regressive with eXogeneous inputs neural network. 

Wang et al. [108] used interval analysis technique for structural damage identification. 

Influences of uncertainties in the measurements and modeling errors on the identification 

were also investigated in this paper. 
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Zhang et al. [109] gave a numerically efficient approach to treat modeling errors 

with the help of intervals which results in bounding of the identified parameters. Interval 

GA (Genetic Algorithm) for evolving neural networks with interval weights and biases 

was developed by Okada et al. [110] where they have proposed an extension of genetic 

algorithm for neuro evolution of interval-valued neural networks. Interval based weight 

initialization method for a sigmoidal feedforward artificial neural network has been given 

by Sodhi and Chandra [111]. Lu et al. [112] presented an interval pattern matcher that can 

identify patterns with interval elements using neural networks. Interval neural network 

technique based on response data for system identification of multi storey shear building 

has been done by Chakraverty and Sahoo [113]. Chakraverty and Behera [114] 

investigated parameter identification of multistorey frame structure using uncertain 

dynamic data. Sahoo et al. [115] proposed identification methodologies for multi-storey 

shear buildings using Interval Artificial Neural Network (IANN) which can estimate the 

structural parameters. Very recently system identification problems using INN have been 

studied by Chakraverty and Sahoo [116]. 

 

1.1.6 Fuzzy Neural Network (FNN) Models 
 

Various research works are being done by using FNN in different application problem. 

Algorithms on fuzzy neural network were given by Buckley and Hayashi [117], Hayashi 

et al. [118]. Survey paper on fuzzy neural network has been written by Buckley and 

Hayashi [119]. Buckley and Hayashi [120] showed how to represent fuzzy expert systems 

and fuzzy controllers as neural nets and as fuzzy neural nets. Ishibuchi et al. [121] 

developed architecture for neural networks where the input vectors are in terms of fuzzy 

numbers. Methodology for FNNs where the weights and biases are taken as fuzzy 

numbers and the input vectors as real numbers has been proposed Ishibuchi et al. [122]. 

FNN with trapezoidal fuzzy weights was also presented by Ishibuchi et al. [123]. They 

have developed the methodology in such a way that it can handle fuzzy inputs as well as 

real inputs. In this respect, Ishibuchi et al. [124] derived a general algorithm for training a 

fuzzified feed-forward neural network that has fuzzy inputs, fuzzy targets and fuzzy 

connection weights. The derived algorithms are also applicable to the learning of fuzzy 

connection weights with various shapes such astriangular and trapezoidal. Another new 

algorithm for learning fuzzified neural networks has also been developed by Ishibuchi et 

al. [125].  Different applications problems in fuzzy logic and fuzzy neural network in the 
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field of science and engineering may be reffered as Som and Mukherjee [126], Pal and 

Mitra [127], Packirisamy et al. [128], Mitra and Hayashi [129], Mitra and Pal [130], 

Chakraborty et al. [131], Qiu et al. [132], Rani and Gulati [133-134]. Lu [135] proposed a 

FNN-based technique to construct an adaptive car-following indicator. The fuzzified 

neural network based on fuzzy number operations has been presented by Li et al. [136] as 

a powerful modelling tool. New learning law for Mamdani and Takagi-Sugeno-Kang type 

FNNs based on input-to-state stability approach was suggested by Yu and Li [137]. The 

new learning schemes employ a time-varying learning rate that is determined from input–

output data and model structure. Stable learning algorithms for the premise and the 

consequence parts of fuzzy rules are also proposed. Self-constructing FNN employing 

extended Kalman filter was designed and developed by Er et al. [138].  

 

Pankaj and Wilscy [139] proposed a method for face recognition using a fuzzy 

neural network classifier based on the Integrated Adaptive Fuzzy Clustering (IAFC) 

method. Wang [140] presented a generalized ellipsoidal basis function-based online self-

constructing FNN which implements a Takagi-Sugeno-Kang (TSK) fuzzy inference 

system. Umoh et al. [141] developed a fuzzy-neural network model and applied the model 

for effective control of profitability in paper recycling to improve production accuracy, 

reliability, robustness and to maximize profit generated by an industry. Vijaykumar et al. 

[142] used T-S fuzzy neural network in speech recognition systems. Various deterrent 

factors influencing the supply chain to forecast the production plan have been presented by 

Sharma and Sinha [143]. Use of neural network combined with fuzzy logic for long term 

load forecasting has been given by Swaroop [144]. The states of the art for the application 

of FNN in diagnosis, recognition, image processing and intelligence robot control of 

medicine are reviewed by Zhang and Dai [145]. They also proposed the application of 

FNN in medicine. Three new algorithms for Takagi-Sugeno-Kang fuzzy system based on 

training error and genetic algorithm are proposed by Malek et al. [146]. Recent work on 

robust FNN sliding mode control scheme for IPMSM drives were also developed by Leu 

et al. [147]. Zahedi et al. [148] presented the prediction of ozone pollution as a function of 

meteorological parameters around the Shuaiba industrial area in Kuwait by a FNN 

modelling approach. An adaptive FNN controller for missile guidance has been given by 

Wang and Hung [149]. System identification problems based on FNN modelling for 

identification of structural parameters of multi-storey shear buildings have been done by 

Sahoo and Chakraverty [150], Chakraverty and Sahoo [151]. 
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1.1.7 Functional Link Neural Network (FLNN) Models 
 

Computation in Multilayer neural network is sometimes time consuming due to presence 

of hidden layers. Hence an efficient learning method is required which will have fast 

computation. Therefore FLNN are developed because FLNN are highly effective and 

computationally more efficient than multilayer neural network. In FLNN the hidden layer 

is excluded by enlarging the input patterns with the help of orthogonal polynomials like 

Chebyshev, Legendre and Hermite polynomials. FLNN has been used in few problems 

which can be stated as Pao [152], Patra et al. [153]. Patra and Kot [154] solved dynamic 

nonlinear system identification problem using Chebyshev functional neural network. 

Functional link artificial neural network based active noise control structure is developed 

by Panda and Das [155] for active mitigation of nonlinear noise processes. Mackenzie and 

Tieu [156] developed a method for obtaining the correlation of a two Hermite neural 

network. Neural network for calculating the correlation of a signal with a Gaussian 

function is described in Mackenzie and Tieu [157]. Purwar et al. [158] used ChNN model 

for system identification of unknown dynamic nonlinear discrete time systems. Ma and 

Khorasani [159] proposed a new type of a constructive one-hidden-layer feedforward 

neural network (OHL-FNN) that adaptively assigns appropriate Orthonormal Hermite 

polynomials to its generated neurons. Misra and Dehuri [160] studied Functional Link 

Artificial Neural Networks (FLANN) for the task of classification. Patra et al. [161] 

studied the application of artificial neural networks (ANNs) for adaptive channel 

equalization in a digital communication system using 4-quadrature amplitude modulation 

(QAM) signal constellation. Patra et al. [162] presented a computationally efficient 

Legendre neural network (LeNN) for equalization of nonlinear communication channels 

for wireless communication systems. Dehuri and Cho [163] gave a survey report on FLNN 

models and also developed a new learning scheme for Chebyshev functional link neural 

network. Xiuchun et al. [164] constructed Chebyshev neural network to obtain the weight-

direct-determination method. Mishra et al. [165] proposed a single layer FLANN structure 

for denoising of image corrupted with Gaussian noise. Mishra et al. [166] used a 

Chebyshev functional link artificial neural network for image denoising which is corrupted 

by Salt and Pepper noise. Patra and Bornand [167] used Legendre neural network for 

identification of nonlinear dynamic systems. Shaik et al. [168] used Chebyshev neural 
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network to solve the problem of observer design for the twin rotor multi-input-multi-

output (MIMO) system. 

 

Dehuri [169] presented hybrid learning scheme to train ChNN in classification 

problems. Using Chebyshev neural network model, Patra [170] modeled the tunnel 

junction characteristics and developed models to predict the external quantum efficiency. 

Nanda and Tripathy [171] used Legendre neural network based air quality parameter 

prediction for environmental engineering application. Nanda and Tripathy [172] 

introduced the idea of designing noise prediction model for opencast mining machineries 

using functional link artificial neural network systems. Jiang et al. [173] proposed a 

Chebyshev functional link neural network based model for photovoltaic modules. Hassim 

and Ghazali [174] evaluated the functional link neural network using an artificial bee 

colony model for the task of pattern classification of 2-class classification problems. New 

methodology using LeNN has been investigated by Ali and Haweel [175] to enhance 

nonlinear multi-input multi-output signal processing. Li and Deng [176] constructed a 

MIMO Hermite neural network for dynamic gesture recognition. An enhanced 

Orthonormal Hermite polynomial basis neural network (EOHPBNN) predistorter is 

proposed by Yuan et al. [177] and it is also experimentally validated. Parija et al. [178] 

investigated and compared the future location prediction between Multilayer perceptron 

back Propagation (MLP-BP) and FLANN. Mishra and Dash [179] used Chebyshev 

functional link artificial neural network for credit card fraud detection problem. 

Chebyshev neural network based backstepping controller has been used by Sharma and 

Purwar [180] for light-weighted all-electric vehicle. Mall and Chakraverty [181] solved 

second order non-linear ordinary differential equations of Lane-Emden type using 

Chebyshev neural network. New algorithm has been proposed by Mall and Chakraverty 

[182] to solve singular initial value problems of Emden–Fowler type equations. Manu et 

al. [183] investigated the problem of designing a neural network observer based on 

Chebyshev neural network. Goyal et al. [184] presented a robust sliding mode controller 

for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. 

Chiang and Chu [185] gave a reference adaptive Hermite fuzzy neural network controller 

for a synchronous reluctance motor. 
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1.2 Gaps 
 

It is already mentioned that system identification problems are inverse (vibration) 

problems consisting of coupled linear or non-linear differential equations that depend upon 

the physics of the system. Above literature review reveals that the inverse problems have 

been handled for deterministic cases in general. While experimenting, data in crisp or 

exact form (due to human or experimental errors) may not be possible to obtain. As such, 

those data may actually be in uncertain form and corresponding methodologies need to be 

developed. 

 

It is an important issue about dealing with variables, parameters or data with 

uncertain value. There are three classes of uncertain models, which are probabilistic, fuzzy 

and interval.  Recently, fuzzy theory and interval analysis are becoming powerful tools for 

various science and engineering problems. Although it is known that interval and fuzzy 

computations are themselves very complex to handle but these are excellent theories to 

mimic the uncertainty of the problems. Having these in mind, one has to develop efficient 

computational models and algorithms very carefully to handle these problems.  

 

Hence, investigations are needed to solve the SI problems where data in uncertain 

form is available. Identification methods with crisp (exact) data are known and traditional 

neural network methods have already been used by various researchers. It is worth 

mentioning that neural network methods have inherent advantage because it can model the 

experimental data and may find the functional relation between input and output where 

good mathematical model is not available/possible. But when the data are in uncertain 

form then traditional ANN may not be applied. Accordingly, new ANN models need to be 

developed which may solve the targeted uncertain SI problems. In this respect, one may 

note from the above literature survey that Interval Neural Network (INN) and Fuzzy 

Neural Network (FNN) models have been developed for few other problems but none for 

SI problems. So, INN and FNN models should be developed which may handle the 

uncertain data (in term of interval and fuzzy) in SI problems.  

 

Moreover this study also involves SI problems of structures (viz. shear buildings) 

with respect to earthquake data (that is due to the natural calamities) in order to know the 

health of a structure. It is well known that earthquake data are both positive and negative. 

The Interval Neural Network and Fuzzy Neural Network model may not handle the data 

with negative sign due to the complexity in interval and fuzzy computation. As such, 
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methods should also be developed to handle this type of problem. Finally, it is also seen 

that training in Multilayer Neural Network (MNN), Interval Neural Network (INN) and 

Fuzzy Neural Network (FNN) are time consuming because it depends upon the number of 

nodes in the hidden layer and convergence of the weights during training. Keeping this in 

mind we may also target to develop efficient learning method which can handle such 

problem with less computation. It may however be noted that the developed methodology 

not only be important for the mentioned problems but those may very well be used in 

other application problems too. 

 

1.3 Aims and Objectives 
 

In reference to the above gaps, the main objective of this thesis is to solve uncertain 

coupled ordinary differential equations with respect to SI problems. As said above, in 

general we may not obtain the corresponding input and output values (experimental) 

exactly (or in crisp form) but we may have only uncertain information of the data. For our 

present work, these uncertain data have been considered in terms of interval and fuzzy 

numbers. Accordingly, identification methodologies should be developed for SI problems 

of multistory shear buildings by proposing new powerful technique of Interval Neural 

Network (INN) and Fuzzy Neural Network (FNN) models. Powerful and efficient 

model(s) (with respect to computation time) of neural network for system identification 

should also be investigated. In view of the above gaps and motivation, the main objectives 

for the present thesis are as follows: 

 

 Investigation of existing ANN computations, their training methods and 

architecture with respect to SI problems; 

 Development of new INN algorithms, its learning method and training 

methodology to handle the SI problems; 

 Validation of above INN algorithms for identification of the physical parameters 

(stiffness etc.) of multistory shear buildings; 

 Development of new FNN algorithms, its learning method and training 

methodology; 

 Validation of above FNN algorithms for identification of the physical parameters 

(stiffness etc.) of multistory shear buildings; 

 Solving SI problems through cluster of ANNs when data are uncertain; 
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 Development of INN and FNN when data are combination of positive and negative 

such as seismic data with respect to the structural problems; 

 Development of efficient FLNN techniques that can handle system identification 

problems with less computation. 

 Development of new interval FLNN techniques for uncertain parameter estimation 

(stiffness etc.) of multistory shear buildings. 

 

1.4 Organization of the Thesis 
 

Present work is based on solution of governing uncertain differential equation of system 

identification problems by proposing new ANN models which can handle uncertain data. 

In this investigation, these uncertain data have been considered in interval or fuzzy form. 

For a given input to the system, rather than solving the inverse vibration problem, the 

forward problem is solved to generate the solution vector. First the initial (prior) values of 

the physical parameters (stiffness etc.) of the system are randomized for the numerical 

experiment and then using these set of physical parameters the responses may be obtained. 

The responses and the corresponding parameters are used as the input/output in the neural 

net. Then the physical parameters may be identified, if new response data is supplied as 

input to the net. Although this is easy to handle if the data/parameter(s) are in crisp form, 

which is not in the actual case. All the units considered here are consistent. In all test 

examples the masses are taken in Kgs, stiffnesses in N/m and displacement in cm and m. 

As such the thesis addresses the above titled problems in a systematic manner in term of 

ten chapters which are briefly described below: 

 

Overview of this thesis has been presented in Chapter 1. Related literatures on 

system identification methods along with ANN, INN, FNN and FLNN models are 

reviewed here. This chapter also contains gaps as well as aims and objectives of the 

present study. 

 

Chapter 2 begins with the basic concepts of Artificial Neural Network (ANN), 

network architecture, types of neural network, different training process, activation 

functions, learning rules etc. Further, this chapter includes general notations and 

definitions of interval and fuzzy numbers (viz. triangular and trapezoidal fuzzy numbers). 

Algorithms of Interval and Fuzzy neural network have also been discussed here. 
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In Chapter 3, SI problems of multistorey shear structure have been solved in terms 

of interval and fuzzy neural network model and the uncertain structural parameters (viz. 

stiffness) are estimated from frequency data. The inputs in INN and FNN model are taken 

as the frequency parameters and outputs as the stiffness parameters. The initial design 

parameters viz. stiffness and mass and so the frequencies of the said problem are known. It 

is assumed that only the stiffness is changed and the mass remains the same after span of 

time. As such, equipments are available to get the present values of the frequencies and 

using these one may get the present parameter values by the developed mathematical 

model such as ANN. If sensors are placed to capture the frequency of the floors in interval 

and fuzzified (uncertain) form then those may be fed into the proposed new ANN model to 

get the present stiffness parameters. Although to train the new ANN model, set of data are 

generated here by solving the governing coupled (uncertain) ordinary differential 

equations numerically beforehand. As such converged ANN model gives the present 

stiffness parameter values in interval/fuzzified form for each floor. Thus one may predict 

the health of the structure. 

 

In Chapter 4, forward problem for each time step is solved for a given input to the 

system, rather than solving the inverse vibration problem. Thus, the solution vector is 

generated. Again, the initial design parameters viz. stiffness, mass and so the responses of 

the said problem are known in uncertain form. The initial values of the uncertain physical 

parameters of the system are used to obtain the interval and fuzzy responses. Responses 

and the corresponding parameters are used as the input/output in the neural net. Next, the 

interval neural network and fuzzy neural network model is trained by the proposed interval 

and fuzzy error back propagation training algorithm. After training of the model, physical 

parameters may be identified if new maximum response data is supplied as input to the net 

which are also in interval and fuzzified form. The procedure has been demonstrated for 

multi-storey shear structures and the structural parameters are identified using the response 

of the structure subject to initial condition and horizontal displacement which are also in 

interval and fuzzified form. 

 

The primary aim of Chapter 5 has been to compute response of multi-storey shear 

structures subject to ground motion data (interval and fuzzy) of Indian earthquakes 

occurred at Chamoli and Uttarkashi using INN and FNN models. The interval and fuzzy 

neural network are first trained for a real earthquake data viz. the ground acceleration as 
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input and the numerically generated responses of different floors of multi-storey buildings 

as output. It may be noted that till date no model exists to handle positive and negative 

data in the INN and FNN. As such, here the bipolar data in [-1, 1] are converted first to 

unipolar form that is to [0, 1] by means of a novel transformation for the first time to 

handle the above training patterns in normalized form. Once the training is done, again the 

unipolar data are converted back to its bipolar form by using the inverse transformation. 

The trained INN and FNN architecture are then used to simulate and test the structural 

responses of different floors for various intensity earthquake data. It is found that the 

predicted responses given by INN and FNN models are good for practical purposes. 

 

In Chapter 6, identification of structural parameters such as mass, stiffness and 

damping matrices of shear buildings using single layer neural network has been presented 

in interval and fuzzified form. To identify the physical parameters in interval and fuzzified 

form, the governing equations of motion are used systematically in a series (cluster) of 

INNs and FNNs. The equations of motion is first solved by the classical method to get 

responses of the consecutive stories and then the equations of motion are modified based 

on relative responses of consecutive stories in such a way that the new set of equations can 

be implemented in a cluster of INNs and FNNs. Here, single-layer INNs and FNNs have 

been used for training each cluster of the INN and FNN such that the converged weights 

give the uncertain structural parameters. 

 

A single layer functional link neural network with multi-input and multi-output 

with feed forward neural network model and principle of error back propagation has been 

used to identify structural parameters in Chapter 7. In the Functional Link neural network 

model, the hidden layer is excluded by enhancing the input patterns with the help of 

orthogonal polynomials such as Chebyshev, Legendre and Hermite. In this case, the input 

is considered as the frequency parameters and the output as the structural parameters. 

Comparison of results among Multi-layer Neural Network (MNN), Chebyshev Neural 

Network (ChNN), Legendre Neural Network (LeNN), Hermite Neural Network (HNN) 

and desired are considered and it is found that Functional Link Neural Network models are 

more effective than MNN. 

 

Chapter 8 proposes Functional Link Neural Network (FLNN) for structural 

response prediction of tall buildings due to seismic loads. The ground acceleration data 

has been taken as input and structural responses of different floors of multi-storey shear 
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buildings have been considered as output. Here, functional expansion block in FLNN has 

been used along with efficient Chebyshev and Legendre polynomials. Training is done 

with one earthquake data and testing is done with different intensities of other earthquake 

data. It is seen that FLNN can very well predict the structural response of different floors 

of multi-storey shear building subject to earthquake data. Results of FLNN are compared 

with Multilayer Neural Network (MNN) and it is worth mentioning that the FLNN gives 

better accuracy and takes less computation time compared to MNN which shows the 

computational efficiency of FLNN over MNN.  

 

In Chapter 9, a new FLNN viz. interval functional link neural network (IFLNN) 

has been developed and then uncertain structural parameters of multistorey shear buildings 

have been identified. The parameters are identified here using response of the structure for 

both ambient and forced vibration. In the functional link, the Chebyshev and Legendre 

orthogonal polynomials are taken as intervals. 

 

Based on the present work, Chapter 10 summarizes the main findings and 

conclusions of the study. Finally, suggestions for future work are also outlined here.  
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Chapter 2 

Preliminaries 

This chapter presents basic concepts of Artificial Neural Network (ANN), network 

architecture, types of neural network, different training methods, activation functions, 

learning rules etc. Related notations and definitions of interval as well as fuzzy numbers 

(viz. triangular, trapezoidal fuzzy numbers) are included here. Further, algorithms of 

Interval and Fuzzy neural network have also been discussed in this chapter. As regards, 

basics and fundamental concepts of ANN with engineering applications can be found in 

books like Zurada [186], Fausett [187] and Sivanandam et al. [188] etc. Several excellent 

books have also been written by other authors such as Jaulin et al. [189], Zimmerman 

[190], Ross [191], Lee [192], Moore [193], Haghighi et al. [194], Chakraverty [195] and 

Chakraverty et al. [196-197] which give an extensive review on various aspects of 

interval, fuzzy set theory and their applications. 

 

2.1 Artificial Neural Network (ANN) 
 

In this section, some important definitions Zurada [186], Fausett [187] and Sivanandam et 

al. [188] related to ANN are included. 

 

Neural network (NN) is an information processing paradigm which is inspired by 

the human nervous systems. It is known as artificial neural network (ANN) because the 

processing is similar to the human brain. An ANN is composed of large number of highly 

interconnected processing elements called the neurons which works in union to solve 

different problems. ANN is used in various application problems, such as pattern 

recognition, data classification, speech recognition, image processing and system 

identification through different learning procedures. ANN’s are a type of artificial 

intelligence that attempts to imitate the way a human brain works. Artificial neural 

network is an information-processing system in which the neurons transfer the 

information. The neurons are connected with each other by connection links known as 

weights. These weights when multiplied with the input give the net input for any typical 

neural network. The output of the net is obtained by applying activation functions to the 

net input. 
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An artificial neural network is characterized by: 

1. Architecture (connection between neurons) 

2. Training or learning (determining weights on the connections) 

3. Activation functions 

 

2.1.2 Network Architecture 
 

The arrangement of neurons into layers and the connection patterns within and between 

layers are generally called as the Network architecture. Based on the connections the 

structures can be classified as below 

 

 Feed Forward Neural Network 
 

In feed forward neural network, the input signal passes into the input layer propagates 

through each of the hidden layers and finally emerge into the output layer. There is no 

feed back or back loops i.e. the signals travels in only one direction. In feed forward 

networks, inputs get associated with the outputs in a straight forward way. 

 

 Feedback Neural Network 
 

In feedback network signals travels in both directions by creating loops in the network. 

These networks are very powerful and sometimes extremely complicated because they 

have closed loop connection from neuron back to itself. These networks are dynamic 

in nature as their state changes continuously until they reach an equilibrium point. 

 

2.1.3 Types of Neural Network 
 

Neural network can be classified in general as single layer and multi-layer network. The 

single layer and multilayer networks are examples of feedforward network, in which the 

signal flow from the input units to the output units.  

 

 Single Layer Neural Network 
 

A single layer neural network has one layer of connection weights. The input layer are 

directly connected to output layer i.e. there is no hidden layer in between the input and 

output layer. The typical single layer neural network architecture is shown in Figure 

2.1.  
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Figure 2.1: A Single Layer Neural Network 
 

 

 Multi-Layer Neural Network 
 

A multilayer neural network is a network with one or more layers of nodes between 

input and output units. The layer between the input and output units is called the 

hidden units. Multi-layer neural networks are used to solve more complicated 

problems when single layer neural network cannot be trained to perform correctly. The 

multilayer neural network is shown in Figure 2.2. 
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Figure 2.2: A Multi-Layer Neural Network 
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2.1.4 Different Training Process 
 

The method of setting up of the weights value is known as learning. The process of 

achieving the expected output by modifying the weights in the connections between 

network layers is called training. In general there are two types of training, supervised and 

unsupervised training. 

 

 Supervised Training 
 

Supervised training means training with the help of a teacher. The process of providing 

the network with a series of sample inputs and then comparing the output with the 

expected responses is supervised training. The training continues until the network is 

able to provide the expected response. 

 

 Unsupervised Training 

Unsupervised training means training without the help of a teacher. In a neural net if 

the target output is not known for training the input vectors, then the training method 

adopted is called as unsupervised training. The net may modify the weight so that the 

most similar input vector is assigned to the same output unit. Unsupervised training is 

more complex and difficult to implement. 

 

2.1.5 Activation Functions 
 

An activation function is a function over the weighted sum of input (net) into a neuron. 

This function over the weighted sum of input (net) gives the output of the neuron. The 

activation function acts as a squashing function, such that the output of the neural network 

lies between certain values (usually within [0 , 1], or [-1 , 1]). 

For present investigation, we have used unipolar and bipolar sigmoid activation functions 

which are monotonic and continuously differentiable functions.  

 

 Unipolar Sigmoid Function 
 

Sigmoid functions are usually s-shaped curves. These functions are used in Multilayer 

neural network. The unipolar sigmoid function is also called logistic function. The 

unipolar sigmoid function is given as  
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where   is a positive parameter. The binary sigmoid function is smooth. It has a 

derivative which is smooth. Its derivative is given by 

       NetfNetfNetf  1'   (2.2)

 

 

 Bipolar Sigmoid Function 
 

This function is related to the hyperbolic tangent function. The bipolar sigmoid 

function is given as 
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(2.3)

 

 

where   is a positive parameter. The bipolar sigmoid function is also smooth with a 

smooth derivative given by 

 
       .11

2

' NetfNetfNetf 


 (2.4)

 

 

2.1.6 Learning Rules of ANN 
 

Learning is the most impressive features of artificial neural network. Learning of artificial 

neural network is updation of weights and bias with some kind of learning algorithm. It is 

done to improve the neural network’s performance. There are many different algorithms 

that can be used when training artificial neural networks, each with their own separate 

advantages and disadvantages. Various types of learning rules used in ANN are Zurada 

[186] 

 

 Hebbian Learning Rule 

 Perceptron Learning Rule 

 Error Back Propagation or Delta Learning Rule 

 Widrow-Hoff Learning Rule 

 Winner-Take Learning Rule etc. 

 

We have used error back propagation learning algorithm to train the neural network in this 

thesis and so only this rule has been discussed in a bit detail below. 

 

 Error Back Propagation or Delta Learning Rule 
 

Error Back propagation learning algorithm has been introduced by Rumelhart et al. [198]. 

It is also known as Delta learning rule, Zurada [186] and is one of the most commonly 

used learning rule. It is valid for continuous activation function and is used in supervised 

and unsupervised training method. 
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The simple perceptron can handle linearly separable or linearly independent 

problems. Taking the partial derivative of error of the network with respect to each of its 

weights, we can know the flow of error direction in the network. If we take the negative 

derivative and then proceed to add it to the weights, the error will decrease until it 

approaches local minima. Then we have to add a negative value to the weight or the 

reverse if the derivative is negative. Because of these partial derivatives and then applying 

them to each of the weights, starting from the output layer to hidden layer weights, then 

the hidden layer to input layer weights, this algorithm is called the back propagation 

algorithm. 

 

The training of the network involves feeding samples as input vectors, calculation 

of the error of the output layer, and then adjusting the weights of the network to minimize 

the error. The average of all the squared errors E for the outputs is computed to make the 

derivative simpler. After the error is computed, the weights can be updated one by one.  
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Figure 2.4: Architecture of multi-layer feed forward neural network 

 

Let us consider a multi-layer neural architecture containing i input nodes Oi, j nodes in the 

hidden layer Oj and k output node Ok. Now by applying feed forward recall with error 

back propagation learning for above model (Figure 2.4) we have the following algorithm 

from Zurada [186]. 
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Step 1: Initialize the weights vji from input to hidden layer and wkj form hidden to output 

layer.  Choose the learning parameter   (lies between 0, 1) and error E. Initially 

error is taken as E=0. 

Step 2:  Training steps start here  

             Outputs of the hidden layer and output layer are computed as below  

                 
  nkOwfO

njOvfO

kjkjk

jijij

,...,2,1,

,...,2,1,








 

(2.4) 

(2.5) 

                  f is the activation function                                                                                                                   

Step 3:  Error value is computed as 
            

  2
2

1
kk OdE 

 

(2.6) 

             Here kd  is the desired output, kO  is output of ANN. 

Step 4:  The error signal terms of the output and hidden layer are computed as 

                    jkjkkok OwfOd '
           

(Error signal of output layer) 

     kjokijijoj wOvfO  '1
   

(Error signal of hidden layer) 

   (2.7) 

   (2.8) 

               where   nknjOwfO jkjk ,...,2,1and,...,2,1,   

Step 5:  Compute components of error gradient vector as 
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(For the particular ANN model Figure 2.4) 
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 for  j=1,2,…,n and k=1,…,n     (For Figure 2.4)   

 

        (2.9) 

 

 

      (2.10) 

Step 6: Weights are modified using gradient descent method from input to hidden and 

from hidden to output layer as 
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               (2.11) 

 

 

               (2.12) 

               Similarly the biases j and k  are also updated.  
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The generalized delta learning rule propagates the error back by one layer, allowing the 

same process to be repeated for every layer. 

 

The concept of interval along with its interval computations, fuzzy numbers and 

different types of fuzzy numbers are defined below which may help the readers for better 

understanding. These basic concepts may be found in few books like Jaulin et al. [189], 

Zimmerman [190], Ross [191], Lee [192], Moore [193], Chakraverty [195] and 

Chakraverty et al. [196-197].  

 

2.2 Basic Definitions 
 

2.2.1 Interval 
 

An interval x~  is denoted by ],[ xx  on the set of real numbers R given by 

                                    xxxRxxxx  :],[~ .                                                   (2.13) 

Here we have only considered closed intervals throughout this thesis, although there exists 

various other types of intervals such as open, half open intervals etc. Here,  x  and x  are 

known as the left and right endpoints of the interval x~  in the above expression (2.13) 

respectively. 

Let us now consider two arbitrary intervals  xxx ,~   and  yyy ,~  . These two intervals 

are said to be equal if they are in the same set. Mathematically it only happens when 

corresponding end points are equal. Hence one may write 

                                  yx ~~   if and only if yx  and yx  .                                         (2.14) 

For the above two arbitrary intervals  xxx ,~   and  yyy ,~  , interval arithmetic 

operations such as addition (+), subtraction (-), multiplication )( and division (/) are 

defined as follows: 

                                          yxyxyx  ,~~  ,                                                         (2.15) 

                                         yxyxyx  ,~~ ,                                                           (2.16) 

                     yxyxyxyxSSyx  ,,,Swhere,max,min~~ ,                      (2.17) 

                              and  
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1
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1
,~/~   if 0 y~                                                   (2.18) 
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Now if k is a real number and  xxx ,~   is an interval then the multiplication are given by  

 

                     
 
 










.0,,

,0,,~

kxkxk
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   (2.19)

 

 2.2.3 Fuzzy Set 
 

 If X is a collection of objects denoted generically by x, then a fuzzy set Û in X is a set of 

ordered pairs:  

                                             XxxxU
U

 ˆ,ˆ                                                          (2.20)  

where, 
Û


 
is called the membership function  

          

2.2.4 Fuzzy Number 
 

A fuzzy number Û  is convex normalized fuzzy set Û of the real line R such that 

                                          RxRx
U

 ,1,0:ˆ                                                       (2.21) 

where, 
Û


 
is called the membership function and it is piecewise continuous. 

There exists variety of fuzzy numbers. But in this study we have used only the triangular 

and trapezoidal fuzzy numbers. So, we define these two fuzzy numbers below. 

 

2.2.5 Triangular Fuzzy Number (TFN) 
 

A triangular fuzzy number Û  is a convex normalized fuzzy set Û of the real line R such 

that 

 There exists exactly one Rx 0  with   10ˆ x
U

  ( 0x  is called the mean value of U), 

where 
Û

  is called the membership function of the fuzzy set. 

  x
Û

  is piecewise continuous. 

Let us consider an arbitrary triangular fuzzy number  cbaU ,,ˆ   as shown in Figure 2.5. 

The membership function 
Û

  of Û  is defined as follows 
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The triangular fuzzy number  cbaU ,,ˆ   can be represented with an ordered pair of 

functions through h-cut approach viz. 

                              chbcahabuu hh  ,,  where,  1,0h  

 

 

   

 

 

 

 

 

 

 

                                             Figure 2.5: Triangular fuzzy number 

 

 

 

 
 

                   Figure 2.5: Triangular Fuzzy Number 
 

2.2.6 Trapezoidal Fuzzy Number (TrFN) 
 

We now introduce an arbitrary trapezoidal fuzzy number  dcbaU ,,,ˆ   as given in Figure 

2.6. The membership function 
Û

  of Û will be interpreted as follows 
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The trapezoidal fuzzy number  dcbaU ,,,ˆ   can be represented with an ordered pair of 

functions through h-cut approach as 

 

                                dhcdahabuu hh  ,,  where,  1,0h  
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                                            Figure 2.6: Trapezoidal fuzzy number 

 

 

 

 

 
 

                                                 Figure 2.6: Trapezoidal Fuzzy Number 
 

2.3 Algorithm for Interval Neural Network (INN) 
 

A Neural Network is said to be an Interval Neural Network (INN) if at least one of its 

input, output and weights or all of them are in Interval form. The multilayer interval neural 

network has three layers. The first layer is considered to be input layer and the last layer is 

the output layer and in between the input and output layers, there may be more than one 

hidden layers. It is well known that neural network basically depends upon the type of 

processing elements or nodes, the network topology and the learning algorithm. Each layer 

will contain a number of neurons or nodes (processing elements) depending upon the 

problem. The processing elements are connected to each other by adjustable weights. The 

input/output behaviour of the network changes if the weights are changed. So, the weights 

of the net may be chosen in such a way so as to achieve a desired output. To satisfy this 

goal, error back propagation training algorithm for adjusting the weights has been 

developed. The error back propagation training algorithm (EBPTA) of interval neural 

network is similar to the traditional artificial neural network. In INN as the input, output 

and the weights are in interval therefore the training or learning algorithm is computed 

based on the interval computation. The interval weights and interval biases are also 

calculated based on above interval computations. The error back propagation training 

algorithm (EBPTA) of interval neural network (INN) is described below as in Ishibuchi 

and Tanaka [101], Ishibuchi et al.  [121] and Ishibuchi et al.  [102]. 
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  A multilayer neural network has been considered where the input, output, weights 

and biases have values in interval form. Here, kji OOO
~

,
~

,
~

 are considered to be the input, 

hidden and output units. The target vector corresponding to the interval output vector is 

given as kT
~

. The weights between input and hidden layers are denoted by  jijiji vvv ,~  , 

the weights between hidden and output layers are denoted by  kjkjkj www ,~   and j
~

 and 

k
~

 are interval biases. The input-output relation of each unit of the interval neural network 

is calculated using interval computation. 

The inputs iO
~

  in the input units are written as 
 

Input units:             nixxxOOO iiiiii ,...,2,1,,~,
~

  
 

The output jO
~

 of the j-th hidden units in the hidden layer is calculated as 

 

Hidden units: 
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The output kO
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 from output units is then evaluated as 
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Here f  is the unipolar activation function defined by  
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The cost function is computed using interval arithmetic as  
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From the cost function a learning rule can be derived for the interval weights kjw~  between 

the output and the hidden layer. The interval weights are updated as, 
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Consequently, output layer weights jiv~  between the hidden layer and the input layer are 

adjusted as,  
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and  is the learning constant. The complete derivation of weight updation has been 

described below. 

 

2.3.1 Derivation of the Learning Algorithm for Interval Case 
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II. If 0kjw  then                                          

                             

     jk
kjkj

O
w

E

w

E










                                      

 

2.3.1.2 Calculation of 
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2.3.1.3 Calculation of 
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I. If  0 jiji vv  then 
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II. If 0 jiji vv  then                                          
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III. If  jiji vv  0  then 
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2.3.1.4 Calculation of 
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II. If  0 jiji vv  then 
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III. If  jiji vv  0  then 
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While modifying jiji vv ,  and kjkj ww ,  it is undesirable but possible sometimes that 

jiji vv   and kjkj ww  . In order to cope with this situation, the interval weights from 

input to hidden layer and from hidden to output layer are determined as,  
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In the similar fashion the interval biases kj 
~

and
~

 are also updated.   

 

2.4 Algorithm for Fuzzy Neural Network (FNN) 
 

A Neural Network is said to be a Fuzzy Neural Network if at least one of its input, output 

and weights or all have values in fuzzified form. The error back propagation algorithm is 

also developed to handle fuzziness.  

  

A three layer neural network has been taken where the inputs, hidden and outputs 

units in fuzzified form are considered as kji OOO ˆandˆ,ˆ . The inputs, hidden and outputs in 
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h-level form is written as      
hkhjhi OOO ˆandˆ,ˆ . The target vector corresponding to the 

fuzzy output vector is given as kT̂ . But in h-level form the target vector is denoted as

 hkT̂ . The weights between input and hidden layers are denoted by  jijijiji vcvvv ,,ˆ  , 

the weights between hidden and output layers are denoted by                                                                                                  

 kjkjkjkj wcwww ,,ˆ   and kj  ˆandˆ  are the biases which all are in fuzzified form. The 

weights and biases in h-level form may be written as 

                 
hkhjhkj

hkjhkjhji
hjihji wwwvvv  ˆandˆ,,ˆ,,ˆ    . The input-output relation 

of each unit of the fuzzified neural network is calculated using fuzzy operations on the h-

level sets of the fuzzy inputs, fuzzy weights and fuzzy biases. The algorithm written below 

has been followed from the papers Ishibuchi et al. [122], Ishibuchi et al. [123] and 

Ishibuchi et al. [124-125].   

   

The inputs  
hiÔ  in the input units are written as 
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The output  
hjÔ  of the j-th hidden units in the hidden layer is calculated as 
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The output  
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 from output units is then evaluated as 
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Output units: 
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The cost function for h-level sets is computed based on fuzzy computations 
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From the cost function a learning rule can be derived for the fuzzy weights  
hkjŵ between 

the output and the hidden layer. The fuzzy weights are updated as, 
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where change in weights are calculated as 
 

       









































hkjhkjkj
hkjhkjhkj

w

E

w

E

w

E
www

][
,

][ˆ
][,][ˆ   

 

Consequently, output layer weights       between the hidden layer and the input layer are 

adjusted as,  
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where change in weights are calculated as 
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and  is the learning parameter. In the similar fashion the fuzzy biases kj  ˆandˆ  are also 

updated. The complete derivation for updating of weights has been described below. 
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2.4.1 Derivation of the Learning Algorithm for Fuzzy Case 
 

2.4.1.1 Calculation of 
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II. If 0][ hkjw  then                                          
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2.4.1.3 Calculation of 
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II. If  0][ hjiv  then                                          

                       

            hi
hjhjh

A

hjihji

OOO
v

E

v

E










1][

][][
                                                     

 

2.4.1.4 Calculation of 
hjiv

E

][


:  

I.  If 0][ hjiv  then 
     

       

        

      hkj

n

hkjw

k
hkhkj

n

hkj
w

k
hkh

B

hihjhjh
B

hjihji

ww

OOO
v

E

v

E

][][

where

1
][][

0][

1
0][

1


























  

 

II. If  0][ hjiv  then  
 

                
hihjhjh

B

hjihji

OOO
v

E

v

E










1

][][


 

 

 

 

 

 

       

 

 

 
 

 

 

 

 



 

 

 

41 

 

Chapter 3 

 

System Identification from Frequency 

Data Using Interval and Fuzzy           

Neural Network 
 

In this chapter, we have proposed identification methodologies for multistorey shear 

buildings using the powerful technique of Artificial Neural Network (ANN) models which 

can handle interval and fuzzified data. Here, inputs are considered as the frequency 

parameters and outputs as the stiffness parameters in interval and fuzzified form. 

Examples have been given for various cases such as two, five and ten storey shear 

structure for crisp case, five and ten storey shear structure with interval data and finally 

one and two storey with fuzzified data. Testing has been done for five storey shear 

structure with interval data to validate the present methods. 

 

3.1 Analysis and Modelling For Interval Case 
 

System identification refers to the branch of numerical analysis which uses the 

experimental input and output data to develop mathematical models of systems which 

finally identify the parameters. The floor masses for this methodology are assumed to be 

     nn mmmmmm ,,...,,,, 2211 and the stiffness      nn kkkkkk ,,...,,,, 2211 are the 

structural parameters which are to be identified. It may be seen that all the mass and 

stiffness parameters are taken in interval form. As such here for each mass im  we have im

as the left value and im  as the right value of the interval. Similarly for the stiffness 

parameter for each ik  we have ik as the left value and ik as the right value of the interval. 

The interval n-storey shear structure is shown in Figure 3.1. Corresponding dynamic 

equation of motion for n-storey (supposed as n degrees of freedom) shear structure without 

damping may be written as 

                                     
       0

~~~~~
 XKXM 

                                                        (3.1) 

where,    xxx  ,~  ,    xxx ,~   

 M
~  MM ,

 is nn   mass matrix of the structure, and is given by 
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 K
~   nnKK is,  stiffness matrix of the structure and may be written as 
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and   T

nxxxX ~,,~,~~
21  is the displacement vector. 

We have first solve the above free vibration equation for vibration characteristics namely, 

for frequency and mode shapes of the said structural system in order to get the stiffness 

parameters in interval form. Accordingly putting      tieX 
~~~

 in free vibration equation 

(3.1) Chopra [199], we get 

 

                                  
        0

~~~~~ 2
 MK

                                                      (3.2) 

 

where   
2~     ,,

2

  are eigenvalues or the natural frequency and 
~

 are 

mode shapes of the structure, respectively. These interval natural frequencies are evaluated 

from the free vibration equation using interval computation described below. 
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Figure 3.1: Multi-storey shear structure with n-levels having interval structural parameters 

 

3.2 Interval Neural Network Model 
 

This section describes structure of multi-layer interval neural network model. The training 

and learning algorithm have already been discussed in Sec. 2.7. Present interval neural 

network model is given in Figure 3.2. iO
~

, jO
~

 and kO
~

 are taken as input, hidden and 

output layers. In Figure 3.2, the inputs  iiiiO  ,
~~
  are frequencies in interval and 

the outputs  kkkk kkkO ,
~~

  are stiffness parameters in interval form. The weights 

between input and hidden layers are denoted by  jijiji vvv ,~   and the weights between 

hidden and output layers are denoted by  kjkjkj www ,~   which are all in intervals. The 

total input to the j
th

 hidden unit in the second layer can be calculated as 

        jjiijijijjj OOvvUUU  ,,,,
~

  (3.3) 

where  jj  ,  are the bias weights of the hidden layer. The right hand side of the above 

equation is computed by interval multiplication and interval addition defined in section 

Sec. 2.2. The output of the hidden unit is evaluated as 

 

       jjjjj UfUfOOO ,,
~

  (3.4) 

 

where f is the unipolar activation function defined by  
 tNe

tNef ~
exp1

1~


  . The 

total input from hidden to the output unit is calculated as 

n 

 2 

1 

 22 , mm  

 22 , kk

 

  11, kk  

 11 , mm

 

 nn mm ,  

 nn kk ,

 

 

 11,  nn mm

 

 

n-1 
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        kkjjkjkjkkk OOwwYYY  ,,,,
~

  (3.5) 

Again the right hand side of the above equation involves interval multiplication and 

interval addition, where  kk  ,  are the bias weights of the output layer. Finally, the 

response of the net is given as 

       kkkkk YfYfOOO ,,
~

  (3.6) 

The error value is computed as 
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22

2

1
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1
 

 

(3.7) 

From the cost function (3.7) a learning rule can be derived for the interval weights  jiv~  

between the hidden and input layer. The interval weights are updated as 
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(3.8) 

where change in weights are calculated as 
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(3.9) 

Consequently output layer weights  kjw~  between the output layer and the hidden layer are 

adjusted as 
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(3.10) 

where change in weights are calculated as 
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(3.11) 

  is the learning constant. In the similar fashion the interval biases kj 
~

and
~

 are also 

updated. 
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Figure 3.2: Multi-Layer Interval Neural Network Model 

 

3.3 Analysis and Modelling For Fuzzy Case 

 

The floor masses for this methodology are assumed to be 

],,[,...,],,[,],,[ 222111 nnn mcmmmcmmmcmm  and the stiffness 

],,[,...,],,[,],,[ 222111 nnn kckkkckkkckk  are the structural parameters which 

are to be identified. The fuzzy n-storey shear structure is shown in Figure 3.3. The 

governing equations of motion for n-storey shear structure in fuzzified form are converted 

to h-level form and may be written as:  

                                                   0̂ˆˆˆˆ  hhhh XKXM                                           (3.12) 

 

where ,       hhh xxx  ,ˆ 
, 
      hhh xxx ,ˆ   

      hhh MMM ,ˆ 
 is nn   mass matrix of the structure in h-level form and is given 

by 
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       nnisKKK hhh  ,ˆ  stiffness matrix of the structure in h-level form and may be 

written as 
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and         Thnhhh xxxX ˆ,,ˆ,ˆˆ
21  are the displacement in h-level form . 

The above free vibration equation is solved first in order to get the stiffness parameters in 

h-level form. Accordingly putting       thi
hh eX




ˆˆˆ   in free vibration equation (3.12), 

we get 

                               hhhhh MK 0ˆˆˆˆ 2
                                                   (3.13) 

 

where            hhhhh  ,,ˆ
22
  are eigen values or the natural frequency  

and  h̂  are mode shapes of the structure, respectively. 
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Figure 3.3: Multi-storey shear structure with n- levels having fuzzy structural parameters  
 

3.4 Fuzzy Neural Network Model 
 

This section describes structure of multi-layer fuzzy neural network model. The training 

and learning algorithm have already been discussed in Sec. 2.8. Present fuzzy neural 

network model is given in Figure 3.4. In Figure 3.4,  
hiÔ ,  

hjÔ  and  
hkÔ  are taken as 

input, hidden and output layers. The weights between input and hidden layers are denoted 

by       
hji

hjihji vvv ,ˆ   and the weights between hidden and output layers are denoted 

by       
hkj

hkjhkj www ,ˆ   which are all in fuzzified form and are taken as h-level set. 

Inputs         hihihihiO  ,ˆˆ   are the frequencies and outputs 

        hkhkhkhk kkkO ,ˆˆ   are the stiffness parameters which are in fuzzified form but 

are converted in h-level form. The total input to the j
th

 hidden unit in the second layer can 

be calculated as 
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where     
hj

hj  ,  are the bias weights of the hidden layer. The right hand side of the 

above equation is computed by interval multiplication and interval addition based on h-

level set. The output of the hidden unit is evaluated as 

 

              
hj

hjhj
hjhj UfUfOOO ,,ˆ   (3.15) 

where f is the unipolar activation function defined by  
 tNe

tNef
ˆexp1

1
ˆ


  . The 

total input from hidden to the output unit in h-level form is calculated as 
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Again the right hand side of the above equation involves interval multiplication and 

interval addition based on h-level set, where     hkhk  ,  are the bias weights of the 

output layer. Finally, the response of the net is given as 

 

              hkhkhkhkhk YfYfOOO ,,ˆ   (3.17) 

The error value is computed as 
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(3.18) 

From the cost function (3.18) a learning rule can be derived for the weights  
hjiv̂  

between the hidden and input layer. The h-level weights are updated as 
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where change in weights are calculated as 
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(3.20) 

Consequently output layer weights  
hkjŵ  between the output layer and the hidden layer 

are adjusted as 
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where change in weights are calculated as 
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        (3.22) 

  is the learning constant. In the similar fashion the fuzzy biases    
hkhj  ˆandˆ  are also 

updated.   
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Figure 3.4: Multi-Layer Fuzzy Neural Network Model 

 

3.5 Case Studies 
 

3.5.1 Crisp Case 

Examples of two, five and ten storey shear structure have been considered. It may be noted 

that in further examples in interval and fuzzy cases, different multistorey shear structures 

are considered to simulate and validate the methodologies. The inputs are taken as the 

  
 h1̂    

 hO1
ˆ  

 
 h2̂  

  
 

hi̂  

Output Layer Input Layer Hidden Layer 

Layer 

 
hj̂

 
 

hk̂

 

 

 hO2
ˆ  

  

 
hjÔ  
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crisp frequency values and the outputs are the stiffness parameters which are also in crisp 

form.  

Example 1. Two storey shear buildings: 

An example of a two storey shear structure is considered where the masses are 

3600021  mm and the initial crisp stiffness parameters have their values as

20000and100000 21  kk . From these initial values of crisp stiffness parameter we 

have generated 40 sets of data for both stiffness and frequency. The 40 training pattern is 

used in this case for training. Here the input layer contains 2 input neurons and output 

layer contain 2 output neurons. Various numbers of hidden nodes are considered and the 

program was executed. After few runs it was seen that 5 hidden nodes are sufficient to get 

the desirable result. As such with accuracy of 0.001, the desired and ANN results for ten 

data among them are summarized in Table 3.1. 

 

Table 3.1: Comparison between desired and ANN value of 1k  and 2k (crisp) for two storey 

shear structure 

 

Data 
No. 1k (ANN) 1k (Des) 2k (ANN) 2k (Des) 

1 183141.0632 181472.3686 21148.1455 21576.1308 

2 190868.2441 190579.1937 28879.8781 29705.9278 

3 112821.4965 112698.6816 28837.8503 29571.6695 

4 190721.7835 191337.5856 25562.316 24853.7565 

5 164741.1345 163235.9246 28164.8835 28002.8047 

6 110890.1358 109754.0405 21234.1519 21418.8634 

7 125986.1574 127849.8219 24837.6067 24217.6128 

8 154938.2043 154688.1519 28732.9869 29157.3553 

9 192911.6695 195750.6835 28071.4429 27922.0733 

10 193284.5597 196488.8535 28828.9278 29594.9243 
 

 

 

Example 2. Five storey shear buildings: 

The masses for five storey shear structure is taken as 36000... 51  mm  and the 

stiffness parameters are within the range  2000001000001 k ,  100000500002 k , 

 60000400003 k ,  50000300004 k ,  30000200005 k . A comparison 

between the desired and ANN values have been presented in Table 3.2. This table has 

been plotted in Figure 3.5. 
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Table 3.2: Comparison between desired and ANN values of 54321 ,,,, kkkkk  for a five 

storey shear structure 

 

 

 

 

Figure 3.5: Comparison between desired and ANN values of K for a five storey shear 

structure 

 

Example 3. Ten storey shear buildings: 

 

For ten storey shear structure constant masses have been considered and stiffness 

parameters are in the range  2000001000001 k ,  3000020000... 102  kk . The 

desired and ANN values for 51   to kk  and 106   to kk
 
compared in Tables 3.3(a) and 3.3(b) 

respectively. 

 

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Data Number

T
a

r
g

e
t 

V
a

lu
e

Five storey shear structure with crisp data

 

 

k1 (Des)

k1 (ANN)

k2 (Des)

k2 (ANN)

k3 (Des)

k3 (ANN)

k4 (Des)

k4 (ANN)

k5 (Des)

k5 (ANN)

Data 

No. 

 

)ANN(1k
 

 

Des)(1k

 

 

)ANN(2k

 

 

Des)(2k

 

 

)ANN(3k

 

 

)Des(3k

 

 

)ANN(4k

 

 

Des)(4k

 

 

)ANN(5k

 

 

Des)(5k

 
1 181277.738 181472.368 57722.680 57880.654 53111.561 53114.814 44531.813 44120.921 24304.530 24387.443 

2 195883.722 190579.193 98497.336 98529.639 40890.778 40714.233 30510.588 30636.656 24013.411 23815.584 

3 110889.324 112698.681 97540.287 97858.347 56939.133 56982.586 35467.070 35538.459 27905.072 27655.167 

4 191334.636 191337.585 74367.090 74268.782 58151.367 58679.865 30921.744 30923.427 27758.983 27951.999 

5 162671.148 163235.924 90080.929 90014.023 53507.075 53574.703 31851.263 31942.635 21775.050 21868.726 

6 109757.877 109754.040 57034.339 57094.316 55073.904 55154.802 46360.940 46469.156 24899.561 24897.644 

7 127671.411 127849.821 71003.128 71088.064 54999.758 54862.649 43688.961 43896.572 24554.259 24455.862 

8 154429.361 154688.151 98500.007 95786.776 48031.314 47844.540 36250.004 36341.989 27719.138 26463.130 

9 196399.16 195750.683 89751.902 89610.366 53100.037 53109.557 48498.010 49004.441 27950.536 27093.648 

10 193722.466 196488.853 98520.881 97974.621 43228.929 43423.733 30822.026 30688.921 26813.963 27546.866 



 

 

 

52 

 

 Table 3.3(a): Comparison between desired and ANN values of 54321 ,,,, kkkkk  for a ten 

storey shear structure. 

 

Data 

No. 

 

)ANN(1k
 

 

Des)(1k

 

 

)ANN(2k

 

 

Des)(2k

 

 

)ANN(3k

 

 

)Des(3k

 

 

)ANN(4k

 

 

Des)(4k

 

 

)ANN(5k

 

 

Des)(5k

 1 116900.656 114999.725 23626.293 23947.074 25255.905 24299.214 29078.698 29493.039 27766.141 28842.810 

2 137413.465 135922.821 22400.131 21970.538 22076.765 22160.189 28671.607 29898.721 23928.679 23185.242 

 3 174166.557 171165.670 26751.824 27587.662 28439.483 28089.902 28056.190 27636.733 28909.507 29349.790 

4 185745.634 187147.651 28203.597 29952.159 23288.599 23565.089 25414.296 25588.205 24175.838 24794.845 

5 131376.808 132868.961 22531.439 21865.714 20887.901 20732.434 22490.503 21838.429 21747.449 22317.916 

6 174687.251 165011.802 25813.586 27811.452 25015.101 25909.914 25615.732 24979.488 24612.157 23962.902 

7 185115.365 197483.614 24841.291 21957.9798 27352.970 29101.878 25184.177 25178.456 27414.622 27050.774 

8 107439.578 107596.736 28408.161 29923.589 22079.074 21937.659 29361.573 29942.430 25283.601 25585.590 

9 164872.295 158701.916 25498.986 28022.615 26269.187 24323.677 28505.576 28548.516 27421.786 27566.307 

10 134496.319 136428.686 23984.669 23091.364 26528.542 27288.638 20735.487 20391.844 26590.029 26789.410 

 

 

Table 3.3(b): Comparison between desired and ANN values of 109876 ,,,, kkkkk  for a ten 

storey shear structure 

 

Data 

No. 

)ANN(6k

 

Des)(6k

 

)ANN(7k

 

Des)(7k

 

)ANN(7k

 

Des)(8k

 

)ANN(9k

 

Des)(9k

 

)ANN(10k

 

Des)(10k

 

1 21170.097 20899.506 25777.665 25605.595 28204.348 29899.502 27503.417 25859.870 27163.546 25814.464 

2 22417.136 20549.741 27621.649 28654.385 27612.505 28451.781 28303.999 29823.032 22093.350 22094.050 

3 29672.968 29638.701 25998.821 27124.148 22438.230 21982.217 26315.554 26153.251 27684.854 29019.908 

4 19962.258 19656.563 21156.258 20166.747 22269.519 21950.715 23818.782 23766.110 27240.574 27020.664 

5 20161.80 20514.482 25387.609 28009.208 23922.463 23268.396 27519.842 28771.817 23219.641 23774.551 

6 22307.093 23043.489 21527.116 21425.093 27311.644 28803.378 27670.745 27848.524 27234.798 27349.559 

7 27804.445 25801.918 24442.816 24784.744 25319.165 24711.018 25870.655 24649.542 27640.802 29541.027 

8 25509.234 25309.644 22738.136 22568.353 23936.881 24039.693 28924.111 28139.769 25172.674 25428.131 

9 28341.851 29012.080 25380.192 23690.916 23071.182 21792.314 28034.575 28984.441 26519.439 25401.058 

10 27911.291 29624.314 26475.855 24319.806 21306.363 21696.088 25327.536 24074.557 24485.256 23343.294 

 

 

3.5.2 Interval Case 

For interval case five and ten storey have been considered.  

 

Example 1. Five storey shear buildings: 

Two problems have been solved for five storey shear structure. The masses are kept 

constant for each story for both the problems. Hence we assume that the structure have the 

masses as 36000~~~~~
54321  mmmmm . The initial interval stiffness parameters 

used to train the first problem have values as 1

~
k    200000,100000, 11 kk  and 

     30000,20000,
~

, 55522  kkkkk  . For the second problem, the initial interval 

2

~
k
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stiffness are taken as 1

~
k    200000,100000, 11 kk , 2

~
k    100000,50000, 22 kk  and 

   333 ,
~

kkk 5

~
k    80000,20000, 55 kk . In this case the input layer contains 5 

input neurons and the output layer also contains 5 output neurons. Again as in crisp case, 

we generate 60 sets of interval data of stiffness parameters and frequency parameters. 

Again various numbers of hidden nodes are taken to optimize the number of hidden nodes 

as per the required accuracy. Finally 10 hidden nodes are found to be sufficient so as to get 

an accuracy of 0.001. After training, 10 trained data among 60 are incorporated for 

comparison of the desired and INN values for first problem in Tables 3.4(a) and 3.4(b). 

Due to insufficient space, the data for only first and second storey of five storey shear 

structure have been incorporated in Table 3.4(a). Similarly the data for fourth and fifth 

storey have been presented in Table 3.4(b). For second problem comparison between the 

desired and INN values for 10 data among 60 data have been plotted in Figures 3.6(a) to 

3.6(e).  

 

Table 3.4(a): Comparison between desired and INN value of 1k , 1k  and 2k , 2k for a five 

storey shear structure   

 

 

 

 

 

 

 

 

Data 

No. 

 

1k (INN) 

 

1k  (Des) 

 

1k  (INN) 

 

1k  (Des) 

 

2k  (INN) 

 

2k  (Des) 

 

2k  (INN) 

 

2k  (Des) 

1 128030 127850 141610 144560 20470 20840 27800 27570 

2 158930 158530 178080 179220 21740 20120 25780 25500 

3 167610 167870 185880 189090 20860 21660 22230 24020 

4 169450 170600 185680 184070 24240 24170 24860 24510 

5 103750 103180 125250 125430 21370 20500 20980 20840 

6 103990 104620 122070 124350 27190 29130 29100 29450 

7 110810 109710 186720 192930 21400 21520 25600 24910 

8 132800 135000 188070 182350 23650 24890 28220 28260 

9 164650 165510 192840 195720 22120 21820 25010 25310 

10 121700 117120 127180 125750 22970 22400 27340 27480 
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Table 3.4(b): Comparison between desired and INN value of 4k , 4k  and 5k , 5k for a five 

storey shear structure   

 

 

 

Figure 3.6(a): Comparison between desired and INN value of 1k and 1k for a five storey 

shear structure  
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k1 lr(Des)

k1 lr(INN)

k1 up(Des)

k1 up(INN)

 

Data No. 

 

 

4k  (INN) 

 

4k  (Des) 

 

4k  (INN) 

 

4k  (Des) 

 

5k  (INN) 

 

5k  (Des) 

 

5k  (INN) 

 

5k  (Des) 

1 25220 24890 26830 26180 24530 24610 25680 25270 

2 24290 23670 25160 25000 22870 23850 24930 24900 

3 20890 20990 25990 25220 23490 22690 28500 28240 

4 20760 21070 27090 26600 23030 23010 29100 29060 

5 25320 25190 26340 26540 27140 27010 28670 28800 

6 26210 26490 28220 27790 22490 22610 25240 25390 

7 26460 27150 29180 28000 26720 25940 27090 26980 

8 25100 24540 29000 29040 20450 20230 25580 26670 

9 25100 25210 28500 28870 20400 20150 23330 21910 

10 21690 21500 27510 27210 20710 21080 28840 29830 
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Figure 3.6(b): Comparison between desired and INN value of 2k and 2k for a five storey 

shear structure   

 

 

Figure 3.6(c): Comparison between desired and INN value of 3k  and 3k for a five storey 

shear structure   
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Figure 3.6(d): Comparison between desired and INN value of 4k  and 4k for a five storey 

shear structure   

 

 

Figure 3.6(e): Comparison between desired and INN value of 5k  and 5k for a five storey 

shear structure   
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Example 2. Ten storey shear buildings: 

Finally, ten storey shear structure have been considered, where the masses for each stories 

are taken to be constant as 36000~~~
1021  mmm  and the initial interval stiffness 

parameter are considered to be as 1

~
k    200000,100000, 11 kk

 
and 2

~
k

     30000,20000,
~

, 10101022  kkkkk  . In this case, the input as well as output 

layer contains 10 neurons each and 100 data sets are trained with 15 hidden nodes in a 

single hidden layer so as to get an accuracy of 0.001. Comparison between the desired and 

INN values for 10 data among 100 sets of data have been incorporated in Tables 3.5(a) 

and 3.5(b). Table 3.5(a) gives the data for fifth and seventh storey of a ten storey shear 

structure. The data for ninth and tenth storey of the same structure have been tabulated in 

Table 3.5(b). 

 

Table 3.5(a): Comparison between desired and INN value of 5k , 5k  and 7k , 7k for a ten 

storey shear structure  

 

 

 

 

 

 

 

 

 

Data 

No. 5k  (INN) 5k  (Des) 5k  (INN) 5k  (Des) 7k  (INN) 7k  (Des) 7k  (INN) 7k  (Des) 

1 22680 24390 25110 26320 24070 24030 24930 24700 

2 20140 20780 22940 23110 22830 22800 23640 23700 

3 19000 20350 24240 24840 25380 25910 27490 27660 

4 26730 27250 29050 29760 22000 21320 28310 28680 

5 21710 23510 28320 29870 23330 23100 26620 26990 

6 22240 22110 25470 25200 25290 24770 28380 27360 

7 20900 21530 25430 25620 21590 21400 28600 28960 

8 25320 28050 27500 28660 23230 22910 27740 27860 

9 24260 22990 28500 26490 23680 23650 24010 24360 

10 23000 22300 24770 24550 22100 21890 24490 24550 
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Table 3.5(b): Comparison between desired and INN value of 9k , 9k  and 10k , 10k  for a 

ten storey shear structure 

 

 

3.5.3 Testing for Interval Case 

An example of a five storey shear structure for comparing the testing values (which are not 

used in the training) of desired and ANN values in interval form is considered. These test 

values are fed into the neural network along with the stored converged weights to generate 

corresponding stiffness parameters. The stiffness parameters used for testing have the 

lower and upper value as 1

~
k    200000,100000, 11 kk  and 2

~
k

     30000,20000,
~

, 55522  kkkkk  . Comparison between the test values of desired 

and INN for 10 data are incorporated in Tables 3.6(a) and 3.6(b). In this case the data for 

first and second storey of a five storey shear structure are included in Table 3.6(a) and the 

data for fourth and fifth storey of the same structure have been tabulated in Table 3.6(b). 

 

 

 

 

 

 

 

 

Data 

No. 9k  (INN) 9k  (Des) 9k  (INN) 9k  (Des) 10k  (INN) 10k  (Des) 10k  (INN) 10k  (Des) 

1 25410 24470 29020 26860 26250 25540 28370 27520 

2 22080 21710 26400 26520 23050 23130 27470 27680 

3 24340 24170 25150 24950 22070 22240 24910 24810 

4 22620 22450 24790 23930 22360 22520 29880 29820 

5 22990 21830 23760 24010 20690 20170 22440 21660 

6 21160 20490 28300 29090 21950 21930 29880 26930 

7 22810 22390 24760 24390 27190 27790 29880 29390 

8 25890 25170 25530 25830 23650 24030 29880 28720 

9 24810 25050 28630 28560 19610 20000 22600 22140 

10 26980 27470 28020 28120 27030 27140 29500 29880 
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Table 3.6(a): Comparison between the testing values of desired and INN of 1k , 1k  and 2k ,

2k for five storey shear structure 

 

Table 3.6(b): Comparison between the testing values of desired and INN of 4k , 4k  and 5k

5k  for five storey shear structure 

 

3.5.4 Fuzzy Case 

In this case one and two storey shear structures have been taken. Two examples for each 

case have been solved.  

 

Example 1. One storey shear buildings: 

First example for one storey shear structure with masses 36000ˆ M  and the stiffness 

parameters lies within the range K =  200000100000 , Kc =  200010100010  , K = 

 200020100020  is solved. A comparison between desired and the ANN values have 

Data 

No. 1k  (INN) 1k  (Des) 1k  (INN) 1k  (Des) 2k  (INN) 2k  (Des) 2k  (INN) 2k  (Des) 

1 102110 101540 140770 140390 21660 21890 24540 24360 

2 108890 104300 114840 109650 22780 24470 25110 26870 

3 109720 113200 112450 116900 22940 21840 24600 23060 

4 168020 164910 190680 194210 23990 23680 26190 25090 

5 171590 173170 192360 195610 26030 25110 26470 26260 

6 163760 157520 167350 164770 26620 27800 28060 28180 

7 110100 105980 147190 145090 21810 20810 28030 27950 

8 121690 123480 152580 154700 24450 26440 28210 29290 

9 128940 129630 136210 135320 24880 23790 28700 27760 

10 167020 174470 182930 182120 23950 24870 27760 28120 

Data 

No. 4k  (INN) 4k  (Des) 4k  (INN) 4k  (Des) 5k  (INN) 5k  (Des) 5k  (INN) 5k  (Des) 

1 22310 21850 27570 27110 20560 20290 22470 22320 

2 21650 22220 28300 29050 26240 24890 28650 29290 

3 21620 21170 28390 29800 26240 26240 28150 27300 

4 23480 22970 25190 24390 24700 24890 28040 26790 

5 21670 21110 23170 23190 24380 23960 26860 25790 

6 23080 22580 24220 24240 22860 22370 25060 23670 

7 23690 24090 26090 25080 24320 24590 29260 29880 

8 21450 20860 24220 25950 21080 20380 28800 29630 

9 23480 22620 24740 22620 25720 25470 29510 28850 

10 25340 26030 26310 28010 25420 25210 28630 29130 
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been incorporated in Table 3.7. This table has been plotted in Figure 3.7. In the second 

example masses 36000ˆ M  and the stiffness parameter varying within the range K = 

 10000050000 , Kc =  10001050010  K =  10002050020  are considered. 

Comparison between the desired and the FNN values are tabulated in Table 3.8 and are 

plotted in Figure 3.8. 

 

Table 3.7: Comparison between desired and FNN values of K̂  for a single storey shear 

structure 

 

Data 

No. 
)(FNNK  )(DesK  )(FNNKc  )(DesKc  )(FNNK  )(DesK  

1 124932.9319 124189.1286 135932.8213 135095.2381 191905.7285 190281.611 

2 135763.4956 140411.2146 152464.2896 151324.954 191726.9669 194488.719 

3 110291.5736 109665.4525 141591.1084 140180.8034 148514.9196 149096.4092 

4 107394.0584 107596.6692 115134.7117 113217.3293 149119.797 148935.2638 

5 124430.5911 123991.6154 134455.7107 133781.941 192947.0787 194225.0591 

6 112574.5401 112331.8935 188853.0283 190015.3846 194542.4439 195633.454 

7 120988.7913 118390.7788 138166.8698 136934.6781 157619.3944 157540.8595 

8 108960.7756 105997.9543 113526.3083 111130.2755 126504.2017 123995.2526 

9 124700.9011 123497.9913 143556.5197 141726.7069 179985.5092 178035.2068 

10 105227.009 104965.443 135988.057 135335.8571 140612.991 138983.8837 

 

 

Figure 3.7: Comparison between desired and FNN values of K̂  for a single storey shear 

structure 
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Table 3.8: Comparison between desired and FNN values of K̂  for a single storey shear 

structure 

 

Data 

No. 
)(FNNk  )(Desk  )(FNNkc  )(Deskc  )(FNNk  )(Desk  

1 62365.0341 62104.5643 67644.4378 67547.619 95458.8463 95145.8055 

2 67613.8959 70215.6073 75826.931 75662.477 95893.1612 97249.3595 

3 55005.0087 54842.7263 70556.3936 70090.4017 74368.7997 74553.2046 

4 53128.7186 53798.3346 56947.542 56618.6646 74261.1768 74472.6319 

5 62246.1626 61995.8077 66881.2194 66895.9705 96278.4523 97122.5295 

6 55957.2602 56165.9467 94391.1219 95012.6923 97271.6645 97826.727 

7 60056.7259 59195.3894 68223.7328 68472.3391 78385.7211 78780.4298 

8 53587.3374 53008.9771 55747.5298 55570.1378 61968.3882 61997.6263 

9 62126.6388 61758.9957 71196.546 70863.3535 89991.9346 89022.6034 

10 52238.7913 52482.7215 67702.5259 67677.9286 69679.1387 69496.9418 

 

 

Figure 3.8: Comparison between desired and FNN values of K̂  for a single storey shear 

structure 
 

Example 2. Two storey shear buildings: 

The first example for two storey shear structure is considered where the masses are 

36000ˆˆ 21  mm  and the stiffness parameters varying within the range

 2000001000001 k ,  2000101000101 ck ,  2000201000201 k  and 

 30000200002 k ,  30010200102 ck ,  30020200202 k . The desired and 

FNN values have been compared in Tables 3.9(a) and 3.9(b). These tables have also been 
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shown in Figures 3.9(a) and 3.9(b). In the second example a two storey shear structure is 

implemented with masses 36000ˆˆ 21  mm  and the stiffness parameters having the range

 100000500001 k ,  100010500101 ck ,  100020500201 k  and 

 30000200002 k ,  30010200102 ck ,  30020200202 k . Comparison 

between the desired and FNN values are again incorporated in Tables 3.10(a) and 3.10(b). 

These tables are plotted in Figures 3.10(a) and 3.10(b). 

 

Table 3.9(a): Comparison between desired and FNN values of 1k̂  for a double storey shear 

structure 

 

Data 

No. 
 FNNk1

  Desk1   FNNck1
  Desck1   FNNk1   Desk1  

1 113258.5422 113317.1008 133858.2555 133969.3413 162741.2326 162807.3359 

2 116526.66 117338.8613 128622.4646 129208.408 193447.2534 195183.0465 

3 139119.0131 139093.7802 143501.0894 143175.117 191801.5675 192053.204 

4 101316.7594 101558.7126 106512.8803 105287.6998 183040.5812 183137.9743 

5 173554.7972 173805.8096 180269.037 180336.4392 198199.4731 198416.3724 

6 105985.8857 106047.1179 117592.2043 116726.841 127688.8972 126931.9426 

7 110472.1362 110631.6345 140132.9188 139925.7771 142461.6007 142303.5615 

8 137120.3743 137250.974 152856.9037 152687.5831 155005.6994 154807.0901 

9 119783.849 119821.8403 142480.6438 141679.9468 195824.6624 194293.6984 

10 141708.5217 141794.4104 148654.6797 148978.7638 165370.4902 165685.9891 
 

 

 

Table 3.9(b): Comparison between desired and FNN values of 2k̂  for a double storey 

shear structure 

 

Data 

No. 
 FNNk2

  Desk2   FNNck2   Desck2   FNNk 2   Desk 2  

1 58488.0205 58566.0533 91472.5908 92796.1403 99954.016 99152.6233 

2 51977.6459 51640.041 65679.199 65072.7474 85856.2114 82258.2268 

3 69213.7504 68833.6105 77764.8854 78069.9896 85939.2478 85054.9378 

4 60124.2902 59566.1848 83319.0924 83316.9426 93794.9834 94103.325 

5 71317.3378 71432.6496 76748.5343 76956.3233 83930.3883 83468.7652 

6 59384.591 59531.6634 73687.8221 74121.1031 85087.5853 84905.276 

7 56031.7629 56050.5807 68215.603 68455.8273 83728.3652 83326.3957 

8 58849.1438 58906.6227 72741.8224 73046.2969 79796.3231 79495.3742 

9 57077.8681 56400.72 61035.9761 61329.384 95110.8992 99091.8975 

10 57858.7023 57830.2476 69404.8867 69250.9562 99433.354 99954.0197 
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Figure 3.9(a): Comparison between desired and FNN values of 1k̂  for a double storey 

shear structure 

 

 

 

Figure 3.9(b): Comparison between desired and FNN values of 2k̂  for a double storey 

shear structure 
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Table 3.10(a): Comparison between desired and FNN values of 1k̂  for a double storey 

shear structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.10(b): Comparison between desired and FNN values of 2k̂  for a double storey 

shear structure 

 

 

 

 

 

 

Data 

No. 

 

 FNNk1
  Desk1   FNNck1

  Desck1   FNNk1
  Desk1  

1 62193.4503 62149.2679 65871.2249 66562.894 69219.2648 69672.8181 

2 71578.6175 71235.4748 71816.4848 72130.1157 83311.5254 83571.557 

3 63514.5116 63533.5212 84447.6191 84399.8043 86708.0123 87062.8972 

4 59459.7849 59872.6899 67907.0231 67971.4105 75148.6421 76002.6234 

5 67809.323 67385.6336 85655.9802 86827.0037 91460.6917 91106.0592 

6 57879.7498 57499.8627 69206.8111 69745.3738 71387.5577 71516.0705 

7 77679.4222 79304.6034 83870.4195 84180.7933 93380.175 94408.5477 

8 63484.2106 63107.2659 69028.8134 69579.1498 85313.0398 85212.3715 

9 52329.6174 52222.7046 72316.9085 72125.2707 88399.7894 88475.7194 

10 50895.5951 50988.8812 69532.938 69859.5759 87547.575 87746.6634 

Data 

No. 

 FNNk2
    Desk2   FNNck2     Desck2   FNNk2

    Desk2  

      1 27396.6322     27507.0572      27776.8241     27698.5425     28078.4211      28085.141 

      2 21439.7109     21682.5355      27548.5904     27550.771     29081.9724      28275.8382 

      3 23717.5546     23773.9554      27948.7301     27919.6303     28617.4807      28629.8048 

      4 22090.0439     22160.1892      23180.7111     23205.2425     28962.7934      29908.7215 

      5 25086.5697     25154.2346      25465.6455     25360.6413     27961.1253      27904.0722 

      6 20724.6386     20919.5068      28645.592     28852.8102     29353.9707      29493.0391 

      7 20706.4881     21137.0574      23381.0249     23275.6543     25716.8788      25890.2606 

      8 21056.3736     21382.9255      21574.7879     21557.5235     26851.9289      26712.6437 

      9 22075.9397     22008.6282      24479.3131     24386.4498     27062.0237      26806.523 

    10 24070.1411     24079.5484      25009.5776     24971.7702     28009.5803      28335.006 
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Figure 3.10(a): Comparison between desired and FNN values of 1k̂ for a double storey 

shear structure. 

 

 

Figure 3.10(b): Comparison between desired and FNN values of 2k̂  for a double storey 

shear structure. 
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3.5.6 Testing for Fuzzy Case 

The training data with the influence of noise for two storey shear structure in TFN form 

for five sets of data have been presented here. Accordingly Figures 3.11(a) and 3.11(b) 

refer the fuzzy plot of frequency. Moreover the TFN (Triangular Fuzzy Number) plots of 

identified stiffness are cited in Figures 3.12(a) and 3.12(b). Also for different alpha values 

such as 8.0and5.0,3.0  hhh , the comparison between the desired and FNN values 

with another five sets of data have been given in Tables 3.11(a), 3.11(b) and 3.11(c).  

 

 

                     Figure 3.11(a): Comparison of 
11 and  with respect to h  

 

 

                 Figure 3.11(b): Comparison of 22 and  with respect to h 
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                  Figure 3.12(a): Comparison of 
11 and kk with respect to h 

 

 

Figure 3.12(b): Comparison of 22 and kk with respect to h 

 

Table 3.11(a): Comparison between desired and FNN values of 2211 ,and, kkkk  for two 

storey shear structure for h=0.3 

Data 

No. 
1k (FNN) 

1k (Des) 
1k (FNN) 

1k (Des) 2k (FNN) 1k (Des) 
2k (FNN) 

2k (Des) 

1 109470 109250 124660 123870 63676 63908 81668 81670 

2 119370 119420 141760 141590 59687 59772 79075 78865 

3 141840 141880 154360 154170 63017 63149 77680 77561 

4 126590 126380 179820 178510 58265 57879 84888 87763 

5 143790 143950 160360 160670 61323 61256 90425 90743 
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Table 3.11(b): Comparison between desired and FNN values of 
2211 ,and, kkkk  for two 

storey shear structure for h=0.5 

 

 

Table 3.11(c): Comparison between the desired and the FNN values of 
2211 ,and, kkkk  

for two storey shear structure for h=0.8 

 

 

 

3.6 Conclusion 
 

Here procedure is demonstrated to identify stiffness parameters for multi-storey shear 

structure using interval and fuzzified data in ANN. Present study considers example 

problems of one, two, five and ten storey shear structures. At first, identification for two, 

five and ten storey shear structures have been done with crisp data. Then the procedure is 

extended for higher stories for interval and fuzzified data. Initial design parameters 

namely, stiffness and mass and so the design frequency of the said problem is known in 

term of intervals and fuzzy. Present values of the uncertain (interval and fuzzy) 

frequencies may be obtained by experiments. One may get the present structural parameter 

values of the shear structure by the proposed INN and FNN using the uncertain 

experimental frequencies. In order to train the new INN and FNN model, set of data are 

generated numerically beforehand. As such converged INN model gives the present 

stiffness parameter values in interval form for each floor. Thus one may predict the health 

of the structure when the data are available as uncertain viz. in term of interval and fuzzy. 

Data 

No. 
1k (FNN) 

1k (Des) 
1k (FNN) 

1k (Des) 2k (FNN) 1k (Des) 
2k (FNN) 

2k (Des) 

1 111790 111390 122640 121830 66536 66826 79388 79513 

2 125300 125280 141300 141110 62124 62253 75972 75891 

3 144990 144970 153930 153750 65795 65976 76269 76271 

4 131130 130750 169150 167990 59057 58865 78073 80211 

5 145180 145390 157010 157330 63632 63541 84419 84602 

Data 

No. 
1k (FNN) 1k (Des) 

1k (FNN) 
1k (Des) 2k (FNN) 1k (Des) 

2k (FNN) 
2k (Des) 

1 115270 114590 119610 118770 70827 71203 75968 76278 

2 134200 134070 140600 140400 65779 65975 71318 71430 

3 149710 149600 153290 153110 69963 70218 74153 74336 

4 137940 137310 153150 152200 60244 60344 67851 68882 

5 147270 147540 152000 152320 67096 66967 75411 75392 
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Corresponding example problems have been solved (as mentioned) and related results are 

reported to show the reliability and powerfulness of the model. Although it may be 

interesting to have the damping in the structural model too. Also another challenge is that 

when we have partial or sparse data for tall storey shear buildings etc. These are important 

concerns to be investigated for the related problems of system identification using interval. 
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Chapter 4 

System Identification from Response Data  

Using Interval and Fuzzy Neural Network 
 

This chapter uses the concept of Interval Neural Network (INN) and Fuzzy Neural 

Network (FNN) modeling for the identification of structural parameters of multi storey 

shear buildings. First the identification has been done using response of the structure 

subject to ambient vibration with interval and fuzzy initial condition. Then forced 

vibration with horizontal displacement in interval and fuzzified form has been used to 

investigate the identification procedure. The model has been developed to handle the data 

in interval and fuzzified form for multistory shear structure and the procedure is tested for 

the identification of the stiffness parameters of simple example problems using the prior 

values of the design parameters. 

4.1 Analysis and Modelling for Interval Case 
 

The floor masses for this application problem are assumed to be 

     nn mmmmmm ,,...,,,, 2211  and the stiffness      nn kkkkkk ,,...,,,, 2211  are the 

structural parameters which are to be identified. It may be seen that all the mass and 

stiffness parameters are taken in interval form. The interval n-storey shear structure is 

already shown in Figure 3.1. Corresponding dynamic equation of motion for n-storey 

(supposed as n degrees of freedom) shear structure without damping may be written as  

                                         
       )(

~~~~~
tFXKXM 


                                                (4.1) 

where,    MMM ,
~

  and    KKK ,
~

  are interval mass and stiffness matrices and 

      tFtFtF ,)(
~

  is the interval horizontal displacement forcing function. 

 Let us consider that the initial conditions in interval form are given by Eq. (4.2) and (4.3) 

as 

                                   0,0)0(~ xxx  = T

nxxx )0(~)0(~)0(~
21                                  (4.2) 

                             0,0)0(~ xxx   = Tnxxx )0(~)0(~)0(~
21


  

                              (4.3) 
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Solution of Eq. (4.1) for free vibration with given interval values of mass and stiffness 

gives the corresponding interval eigenvalues and eigenvectors. These are denoted 

respectively by i
~

 and   
ii

AAA ,
~

 , ni ,...,1  where  ii 
~~ 2   are the system’s 

interval natural frequency. It may be noted that the free vibration equation will be an 

interval eigenvalue problem. The interval eigenvalue and vector are obtained then by 

considering different sets of lower and upper stiffness and mass values. Although there 

exist different methods to handle interval eigenvalue problems but here the above 

procedure has been used so that we may handle the inverse of the matrices in crisp form 

separately as lower and upper value. And that is why now we will replace the ‘~’ from all 

notations and will consider the case for lower form first and simultaneously for upper 

form. Hence the modal matrix for lower form A  may be written as 

                                    
        

n
AAAA 

21
                                               (4.4) 

Denoting the diagonal matrix made up of the eigenvalues in lower form as i , as  
nn

 , a 

new set of co-ordinates in lower form y  related to the co-ordinates  X  is introduced 

by the well known transformation    

                                               yAX                                                                        (4.5) 

If the system (4.1) is subjected to an initial velocity only then substituting Eq. (4.5) in Eq. 

(4.1) for ambient vibration, the following equation is obtained for the response in lower 

form as: 

                                      )0(
11

xADAX 
                                                   (4.6) 

 whereas for the horizontal displacement in lower form we have the equation 

                               
           tFAPyy

T1
                                                   (4.7) 

  where 

                                             AMAP
T

                                                               (4.8)   

The final response for this case may be expressed in term of the original co-ordinates 

 X  after solving Eq. (4.7) for y and then putting in Eq. (4.5).  In the similar manner we 

can compute the response for upper form. The training patterns are now trained using 

Interval Error Back Propagation Training Algorithm (IEBPTA) of generalized delta 

learning rule. 
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4.2 Interval Neural Network Model 
 

This section describes structure of multi-layer interval neural network model. The training 

and learning algorithm have already been discussed in Sec. 2.7, 3.2. Present interval neural 

network model is given in Figure 4.1. The inputs  iiii XXXO ,
~~

  are responses in 

interval and the outputs  kkkk kkkO ,
~~

  are stiffness parameters in interval form. 

 

                                                             

 

  

 

  

                                                                                                                              

            

 

                                                                                                                           

                                                                                                                           

 

 

 

Figure 4.1: Multi-Layer Interval Neural Network Model 

 

4.3 Analysis and Modelling for Fuzzy Case 
 

The fuzzy n-storey shear structure is already shown in Figure 3.3. Corresponding 

differential equation of motion for n-storey (uncertain) structure without damping is 

Chakraverty [74]: 

                                               tFXKXM ˆˆˆˆˆ                                                             (4.9) 

where,    MMcMM ,,ˆ   and    KKcKK ,,ˆ   are mass and stiffness matrices in fuzzy 

form and          tFtFctFtF ,,ˆ   is the fuzzy horizontal forcing function. 

Let us consider that the initial conditions are given as 

         Tnxxxx 0ˆ0ˆ0ˆ0ˆ 21   
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         Tnxxxx 0ˆ0ˆ0ˆ0ˆ
21    

Solution of Eq. (4.9) for free vibration with given fuzzy values of mass and stiffness gives 

the corresponding fuzzy eigenvalues and eigenvectors. These are denoted respectively by 

i̂  and   ii AAcAA ,,ˆ  , ni ,...,1  where  ii  ˆˆ 2   are the system natural frequency in 

fuzzy form. It may be noted that the free vibration equation will be a fuzzy eigen value 

problem. The fuzzy eigen value and vector are obtained then by considering different sets 

of lower, centre and upper stiffness and mass values. Here the above procedure has been 

used so that we may handle the inverse of the matrices in crisp form separately for lower, 

centre and upper values. And that is why now we will drop ‘^’ from all notations and will 

consider the case for lower form first and similarly for centre and upper form. Hence the 

modal matrix for lower form A may be written as 

                                    
        

n
AAAA 

21


                                             
(4.10) 

Denoting the diagonal matrix made up of the eigenvalues in lower form as i   
nn

  , a 

new set of co-ordinates  y related to the co-ordinates  X  is introduced by the well 

known transformation    

                                                     
     yAX                                                                (4.11) 

If the system (4.9) is subjected to an initial velocity only then substituting Eq. (4.10) in Eq. 

(4.9) for ambient vibration, the following equation is obtained for the response in lower 

form  

                                            )0(
11

xADAX 
                                           (4.12)    

 whereas for the horizontal displacement in lower form we have the equation 

                                    
           tFAPyy

T1
 

                                         
(4.13) 

  where 

                                                   AMAP
T

                                                       (4.14)   

The final response for this case may be expressed in term of the original co-ordinates  X  

after solving Eq. (4.13) for y and then putting in Eq. (4.11). In similar manner we can 

compute the response for centre and upper form. The training patterns are now trained 

using Fuzzy Error Back Propagation Training Algorithm (FEBPTA).  
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4.4 Fuzzy Neural Network Model 
 

This section describes structure of multi-layer fuzzy neural network model. The training 

and learning algorithm have already been discussed in Sec. 2.8, 3.4. Present fuzzy neural 

network model is given in Figure 4.2. Inputs         hihihihi XXXO ,ˆˆ   are the 

frequencies and outputs         hkhkhkhk kkkO ,ˆˆ   are the stiffness parameters which 

are in fuzzified form but are converted in h-level form.  

  

 

                                                             

 

  

 

  

                                                                                                                                 

            

 

                                                                                                                           

                                                                                                                           

 

 

 

Figure 4.2: Multi-Layer Fuzzy Neural Network Model 
 

4.5 Results and Discussion 
 

4.5.1 Interval Case 

 

Although the developed method has been used for different storey shear structure but here 

only two storey shear structure has been reported to understand the methodology. To 

investigate the present method numerical experiment has been shown for two-storey 

lumped mass structure to identify interval stiffness parameters. So, we consider the floor 

masses for two storey shear structure in interval form as    2211 ,and, mmmm . Similarly 

the stiffness parameter may also be written in interval form as    2211 ,and, kkkk . For 
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the present investigation, the masses are assumed to be constant i.e.,
 

2211 , mmmm  . 

One may note for identifying the interval stiffness parameters we need to have interval 

responses in the input nodes. In practical application due to error in measurements, we 

may have the response data in interval form. It is worth mentioning that the response may 

actually be obtained from some experiments. But here the analyses have been shown by 

numerical simulation only. In this respect one may see that the procedure is mentioned 

with constant masses but with interval stiffness parameters. To get the set of data of 

interval responses and interval stiffness parameters, the problem has to be solved first as 

forward vibration problem. For this the initial design (structural) parameters in interval 

form are randomized [74] and training sets of initial interval stiffness parameters are 

generated. For the above sets of initial interval stiffness parameters, the set of 

corresponding responses in interval form are generated from Eq. (4.6) for ambient 

vibration and from Eq. (4.5) for other case (after solving Eq. (4.8) for yory ). Now the 

mentioned neural net is trained with the interval responses that are generated from the 

structural parameters. When the neural net is converged, (or trained) the converged neural 

weight matrices jiv~  and mjw~  for hidden and output layer are stored. In order to get the 

interval responses for ambient vibration problem, Eq. (4.6) is used and for forced vibration 

problem Eq. (4.5) and Eq. (4.8) are used. The neural network training is done till a desired 

accuracy is reached. We will identify the stiffness parameters in interval form using the 

interval form of the maximum absolute response.  The methodology has been discussed by 

giving the results for following five cases.  

 

Case (i): Ambient vibration: interval response with crisp initial condition. 

Case (ii): Ambient vibration: interval response with initial condition in interval form.  

Case (iii): Forced vibration: interval response with the forcing function in crisp form. 

Case (iv): Forced vibration: interval response with the forcing function in interval form.  

Case (v): Interval response for both ambient and forced vibration for testing of the method 

with the data which are not used in the training.   

 

A set of computer programs have been written and tested for variety of experiments for 

different cases and it is a gigantic task to incorporate all the results. But few of them are 

reported to understand the methodology. All the parameters are taken in consistent units 

and the data for the initial interval stiffness parameters, are considered for the academic 
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illustrations. The input layer will have the maximum absolute interval responses for 

ambient as well as for forced vibration and output layer contains the corresponding 

interval stiffness parameters of the system. As such, the input layer will have the nodes as 

    222111 ,
~

and,
~

XXXXXX 
 

and output layer will have the nodes as 

    222111 ,
~

and,
~

kkkkkk  for two storey shear structure. This neural network 

architecture is maintained for all the cases.  

 

Examples for case (i): 

As mentioned earlier for case (i), the system is subjected first to crisp initial condition 

expressed by the vector (with zero displacement) as   T
x 1010)0(  . Two examples 

in case (i) have been solved. For first example, a double storey shear structure is taken 

where the masses are 1and1 2211  mmmm  and the initial stiffness parameters 

are within the range  2000,1000
~

1 k  and  2000,1000
~

2 k . In second problem the 

masses are taken to be the same as that of the first one and the stiffness parameters varies 

within the range   3200,2200
~

1 k  and  2100,1100
~

2 k . From these initial interval 

stiffness parameters we have generated 40 data for both stiffness and responses in interval 

form. These 40 numbers of data are used as training patterns. Here the input layer contains 

2 (interval) input neurons and output layer contains 2 (interval) output neurons. Various 

numbers of hidden nodes are considered and the program was executed. After few runs it 

was seen that 6 hidden nodes are sufficient to get the desirable result. As such for the first 

problem, with accuracy of 0.001, the desired and ANN results for 10 numbers of data 

chosen from 40 data have been plotted in Figures 4.3(a) and 4.3(b). For second problem, 

again 10 data are summarized in Tables 4.1(a) and 4.1(b).  
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Figure 4.3(a): Comparison of desired and INN value for ambient vibration with crisp 

initial condition for
 1k , 1k  for case (i), (first example)  

 

 
   

Figure 4.3(b): Comparison of desired and INN value for ambient vibration with crisp 

initial condition for 2k , 2k  for case (i), (first example) 
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Table 4.1(a): Comparison of desired and INN value for ambient vibration with crisp initial 

condition for 
1k , 1k  for case (i), (second example) 

 

 

 

Data 

No. 

1k (INN) 1k (Des) 

 

Deviation 

% 
1k (INN) 

1k (Des) 

 

Deviation 

% 

1 2415 2416 0.04 2936 2935 -0.03 

2 2300 2297 -0.13 3125 3171 1.45 

3 2925 2982 1.91 3018 3067 1.6 

4 2290 2286 -0.17 2398 2416 0.75 

5 2567 2566 -0.04 2625 2598 -1.04 

6 2575 2569 -0.23 2784 2762 -0.8 

7 2427 2439 0.49 2844 2885 1.42 

8 2803 2798 -0.18 2848 2852 0.14 

9 2693 2694 0.04 3036 2989 -1.57 

10 2361 2362 0.04 2564 2568 0 

 

 

Table 4.1(b): Comparison of desired and INN value for ambient vibration with crisp initial 

condition for 2k , 2k  for case (i), (second example) 
 

 

 

Data 

No. 

2k (INN) 2k (Des) 

 

Deviation 

% 
2k (INN) 

2k (Des) 

 

Deviation 

% 

1 1401 1402 0.07 1890 1882 -0.43 

2 1202 1201 -0.08 1710 1714 0.23 

3 1393 1394 0.07 2013 2074 2.94 

4 1340 1337 -0.22 1517 1542 1.62 

5 1637 1631 -0.37 1845 1805 -2.22 

6 1193 1191 -0.17 1878 1868 -0.54 

7 1495 1505 0.66 1555 1543 -0.78 

8 1210 1205 -0.41 1758 1765 0.4 

9 1215 1212 -0.25 1227 1220 -0.57 

10 1874 1884 0.53 2004 2044 1.96 

 

 

Examples for case (ii): 

In case (ii) two problems have been solved for two storey shear structure. Here the system 

is subjected to initial condition expressed by the vector (with zero displacement) in 

interval form as    T
xx )8,10(10,8)0()0(  . The masses are kept constant for 
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both the problems and are taken as 1and1 2211  mmmm . The initial interval 

stiffness parameter for first problem is considered as  2000,1000
~

1 k  and 

 2000,1000
~

2 k and for the second example the initial interval stiffness are taken as 

 3200,2200
~

1 k  and  2100,1100
~

2 k . In this case, 50 numbers of data for both 

responses and structural parameters are generated from these initial interval stiffness 

parameters. The neural network architecture is similar to case (i). Again various numbers 

of hidden nodes are taken as per the desired accuracy and finally 8 hidden nodes are found 

to be sufficient to get an accuracy of 0.001. After training with 50 numbers of data, we 

incorporate 10 numbers of data for comparison of the desired and INN values for the first 

problem in Tables 4.2(a) and 4.2(b). For second problem, comparison between the desired 

and INN values for 10 data chosen from 50 numbers of data are plotted in Figures 4.4(a) 

and 4.4(b). 

 

Table 4.2(a): Comparison of desired and INN value for ambient vibration with interval 

initial condition for 1k , 1k  for case (ii), (first example) 

 

Data 

No. 
1k (INN) 1k (Des) 

Deviation 

% 1k (INN) 
1k (Des) 

Deviation 

% 

1 1144 1145 0.09 1251 1250 -0.08 

2 1451 1427 -1.68 1836 1853 0.92 

3 1063 1060 -0.28 1617 1622 0.31 

4 1349 1351 0.15 1953 1913 -2.09 

5 1513 1513 0 1930 1955 1.28 

6 1420 1402 -1.28 1493 1501 0.53 

7 1075 1076 0.09 1496 1499 0.2 

8 1223 1240 1.37 1360 1348 -0.89 

9 1129 1123 -0.53 1850 1910 3.14 

10 1184 1184 0 1378 1379 0.07 
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Table 4.2(b): Comparison of desired and INN value for ambient vibration with interval 

initial condition for 2k , 2k  for case (ii), (first example) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.4(a): Comparison of desired and INN value for ambient vibration with interval 

initial condition for 1k , 1k  for case (ii), (second example) 
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Data 

No. 
2k (INN) 2k (Des) 

Deviation 

% 2k (INN) 
2k (Des) 

Deviation 

% 

1 1401 1402 0.07 1890 1882 -0.43 

2 1202 1201 -0.08 1710 1714 0.23 

3 1393 1394 0.07 2013 2074 2.94 

4 1340 1337 -0.22 1517 1542 1.62 

5 1637 1631 -0.37 1845 1805 -2.22 

6 1193 1191 -0.17 1878 1868 -0.54 

7 1495 1505 0.66 1555 1543 -0.78 

8 1210 1205 -0.41 1758 1765 0.4 

9 1215 1212 -0.25 1227 1220 -0.57 

10 1874 1884 0.53 2004 2044 1.96 
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Figure 4.4(b): Comparison of desired and INN value for ambient vibration with interval 

initial condition for 2k , 2k for case (ii), (second example) 
 

Examples for case (iii): 

Similarly for the problem with the considered horizontal displacement function, the 

identification of interval stiffness from interval responses with zero initial condition and 

the forcing function in crisp form are considered in case (iii). The forcing function vector 

in crisp form is defined as   T
tttF  6.1sin100)6.1sin(100)(  . Again two 

problems have been considered for this case. The initial interval stiffness parameter used 

to train the first problem have values as  3000,2000
~

1 k  and  2000,1000
~

2 k  and for 

second problem, the initial interval stiffness are considered as  3200,2200
~

1 k  and 

 2100,1100
~

2 k . The masses are kept constant as that of the above cases. Here, 60 data 

for both responses and stiffness parameters have been generated using these initial interval 

structural parameters. These 60 data are used for training with 10 hidden nodes so as to get 

an accuracy of 0.001. After training, 10 data chosen from 60 data are again plotted in 

Figures 4.5(a) and 4.5(b) in order to compare the desired and INN values for the first 

problem. Similarly the results for second example are included in Tables 4.3(a) and 4.3(b). 
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 Figure 4.5(a): Comparison of desired and INN value for forced vibration with crisp 

forcing function for 1k , 1k  for case (iii), (first example) 

 
 

 
 

Figure 4.5(b): Comparison of desired and INN value for forced vibration with crisp 

forcing function for 2k , 2k  for case (iii), (first example) 
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Table 4.3(a): Comparison of desired and INN value for forced vibration with crisp forcing 

function for 1k , 1k  for case (iii), (second example) 
             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3(b): Comparison of desired and INN value for forced vibration with crisp forcing 

function for 2k , 2k   for case (iii), (second example) 
 

        

Data 

No. 
2k (INN) 2k (Des) 

Deviation 

% 2k (INN) 
2k (Des) 

Deviation 

% 

1 1161 1170 0.77 1211 1211 0 

2 1330 1345 1.12 1888 1880 -0.43 

3 1455 1463 0.55 1494 1490 -0.27 

4 1337 1342 0.37 1944 1931 -0.67 

5 1123 1125 0.18 1514 1504 -0.66 

6 1145 1153 0.69 1195 1196 0.08 

7 1220 1232 0.97 1282 1279 -0.23 

8 1821 1759 -3.52 2043 2042 -0.05 

9 1772 1842 3.8 2018 2056 1.85 

10 1684 1675 -0.54 1767 1758 -0.51 

 

 

 

 

Data 

No. 
1k (INN) 1k (Des) 

Deviation 

% 1k (INN) 
1k (Des) 

Deviation 

% 

1 1070 1070 0 1111 1111 0 

2 1242 1245 0.24 1798 1780 -1.01 

3 1357 1363 0.44 1401 1390 -0.79 

4 1246 1242 -0.32 1812 1831 1.04 

5 1022 1025 0.29 1407 1404 -0.21 

6 1066 1053 -1.23 1085 1096 1 

7 1121 1132 0.97 1183 1179 -0.34 

8 1693 1659 -2.05 1898 1942 2.27 

9 1729 1742 0.75 1939 1956 0.87 

10 1574 1575 0.06 1657 1658 0.06 
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Examples for case (iv): 

Next, in case (iv) the forcing function vector in interval form with zero initial condition is 

defined as     T
tttttF )2.3sin(100,)6.1sin(80)2.3sin(100,)6.1sin(80)(

~
  .                                

Again two problems have been solved considering the masses and stiffnesses as the 

previous cases. Here 80 data are used to train with 15 hidden nodes so as to get an 

accuracy of 0.001. Comparison between the desired and INN values for 10 data chosen 

from 80 numbers of data have been incorporated in Tables 4.4(a) and 4.4(b) for first 

problem. Similarly the results for second problem have been plotted in Figures 4.6(a) and 

4.6(b). 

 

Table 4.4(a): Comparison of desired and INN value for forced vibration with interval 

forcing function for 1k , 1k   for case (iv), (first example) 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4(b): Comparison of desired and INN value for forced vibration with interval 

forcing function for 2k , 2k  for case (iv), (first example) 

       

 

 

 

 

 

 

 

 

 

 

 

Data 

No. 
1k (INN) 1k (Des) 

Deviation 

% 1k (INN) 
1k (Des) 

Deviation 

% 

1 2155 2145 -0.47 2251 2250 -0.04 

2 2416 2427 0.45 2879 2853 -0.91 

3 2118 2060 -2.82 2625 2622 -0.11 

4 2338 2351 0.55 2955 2913 -1.44 

5 2505 2513 0.32 2954 2955 0.03 

6 2357 2402 1.87 2499 2501 0.08 

7 2076 2076 0 2497 2499 0.08 

8 2198 2240 1.88 2362 2348 -0.6 

9 2157 2123 -1.6 2863 2910 1.62 

10 2155 2184 1.33 2370 2379 0.38 

Data 

No. 
2k (INN) 2k (Des) 

Deviation 

% 2k (INN) 
2k (Des) 

Deviation 

% 

1 1070 1070 0 1105 1111 0.54 

2 1240 1245 0.4 1757 1780 1.29 

3 1370 1363 -0.51 1370 1390 1.44 

4 1244 1242 -0.16 1835 1831 -0.22 

5 1029 1025 -0.39 1397 1404 0.5 

6 1051 1053 0.19 1101 1096 -0.46 

7 1132 1132 0 1180 1179 -0.08 

8 1689 1659 -1.81 1913 1942 1.49 

9 1714 1742 1.61 1931 1956 1.28 

10 1571 1575 0.25 1692 1658 -2.05 
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Figure 4.6(a): Comparison of desired and INN value for forced vibration with interval 

forcing function for 1k , 1k  for case (iv), (second example) 

 

 

 
    

Figure 4.6(b): Comparison of desired and INN value for forced vibration with interval 

forcing function for 2k , 2k  for case (iv), (second example) 
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Examples for case (v) (Testing case): 

Finally in case (v), two examples for testing the data which are not used (seen) during the 

training are considered for both ambient and forced vibration. These test data are fed into 

the neural network along with the stored (converged) weights to generate corresponding 

stiffness parameters. For the first problem, interval response with initial condition in 

interval form and for second problem, the interval responses with the forcing function in 

interval form are considered for testing. Here 10 numbers of data are taken for testing 

using the stored converged weights of training. Comparison between the test values of 

desired and INN for ambient vibration with the initial condition in interval form for 10 

numbers of data are plotted in Figures 4.7(a) and 4.7(b). Again comparison between the 

test values of desired and INN for forced vibration with the forcing function for 10 data in 

interval form have been plotted in Figures 4.8(a) and 4.8(b). 

It may be seen that the neural results are comparable with the desired and the 

deviations in percentage between them have also been shown in all the tables.   

 

 
 

   

Figure 4.7(a): Comparison of desired and INN value of testing data for ambient vibration 

with interval initial condition for 1k , 1k  for case (v), (first example) 
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Figure 4.7(b): Comparison of desired and INN value of testing data for ambient vibration 

with interval initial condition for 2k , 2k  for case (v), (first example) 

 

 
  

Figure 4.8(a): Comparison of desired and INN value of testing data for forced vibration 

with interval forcing function for
 1k , 1k  for case (v), (second example) 

1 2 3 4 5 6 7 8 9 10
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Data Number

T
a

r
g

e
t
  V

a
l
u

e

Two storey shear structure with interval testing data

 

 

k2 lr(Des)

k2 lr(INN)

k2 up(Des)

k2 up(INN)

1 2 3 4 5 6 7 8 9 10
2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

Data Number

T
a

r
g

e
t
  V

a
l
u

e

Two storey shear structure with interval testing data

 

 

k1 lr(Des)

k1 lr(INN)

k1 up(Des)

k1 up(INN)



 

 

 

88 

 

 

 
 

Figure 4.8(b): Comparison of desired and INN value of testing data for forced vibration 

with interval forcing function for
 2k , 2k  for case (v), (second example) 

 
  

4.5.2 Fuzzy Case 
 

Although the developed method may be used for different storey shear structure but here 

only two storey shear structure has been reported to understand the methodology. To 

investigate the present method numerical experiment has been shown for two-storey 

lumped mass structure to identify fuzzified stiffness parameters. So, we consider the floor 

masses for two storey shear structure in fuzzy form as    212111 ,,and,, mcmmmcmm . 

Similarly the stiffness parameter may also be written in fuzzy form as 

   222111 ,,and,, kckkkckk . For the present investigation, the masses are assumed to be 

constant i.e., 222111 , mcmmmcmm  . One may note that for identifying the 

stiffness parameters in fuzzy form we need to have fuzzified responses in the input nodes. 

In practical application due to error in measurements, we may have the response data in 

fuzzy form. It is worth mentioning that the response may actually be obtained from some 

experiments. But here the analyses have been shown by numerical simulation. In this 

respect one may see that the procedure is mentioned with constant masses but with 

stiffness parameters in fuzzy form. To get the set of data of responses and stiffness 

parameters in fuzzified form, the problem has to be solved first as forward vibration 
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problem. For this the initial design (structural) parameters in fuzzified form are 

randomized as in Chakraverty [74] and training sets of initial fuzzified stiffness 

parameters are generated. For the above sets of initial fuzzified stiffness parameters, the 

set of corresponding responses in fuzzy form are generated from Eq. (4.12) for ambient 

vibration and from Eq. (4.11) for forced vibration case (after solving Eq. (4.14) for ŷ ). 

Now the mentioned neural net is trained with the fuzzified responses that are generated 

from the structural parameters. When the neural net is converged (or trained) the 

converged neural weight matrices jiv̂  and jkŵ  in Figure 4.2 for hidden and output layers 

are stored. The neural network training is done till a desired accuracy is achieved. We will 

identify the stiffness parameters using fuzzy form of the maximum absolute response. The 

methodology has been discussed by giving the results for the following five cases.  

 

Case (i): Ambient vibration: fuzzy response with crisp initial condition. 

Case (ii): Ambient vibration: fuzzy response with initial condition in fuzzy form.  

Case (iii): Forced vibration: fuzzy response with the forcing function in crisp form. 

Case (iv): Forced vibration: fuzzy response with the forcing function in fuzzy form.  

Case (v): Fuzzy response for both ambient and forced vibration for testing of the method 

with the data which are not used in the training.  

  

All the parameters are taken in consistent units and the data for the initial fuzzified 

stiffness parameters are considered for the academic illustrations. The input layer will 

have the maximum absolute fuzzified responses for ambient as well as for forced vibration 

and output layer contains the corresponding fuzzified stiffness parameters of the system. 

As such, the input layer will have the nodes as 

       22221111 ,,ˆand,,ˆ XcXXXXcXXX  and output layer will have the nodes as 

       22221111 ,,ˆand,,ˆ kckkkkckkk   for two storey shear structure. This neural 

network architecture is maintained for all the cases. 

  

Examples for case (i): 

As mentioned earlier for case (i), the system is subjected first to crisp initial condition 

expressed by the vector (with zero displacement) as   T
x 1010)0(  . Two examples 

in case (i) have been solved. For first example, a double storey shear structure is taken 

where the masses are 1and1 222111  mcmmmcmm  and the initial stiffness 
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parameters are within the range  2020,2010,2000ˆ
1 k  and  1020,1010,1000ˆ

2 k . In 

second problem the masses are taken to be the same as that of the first one and the 

stiffness parameters vary within the range  2220,2210,2200ˆ
1 k  and 

 1120,1110,1100ˆ
2 k . From these initial fuzzy stiffness parameters we have generated 

50 sets of data for both stiffness and responses. These 50 training pattern are used in this 

case for training. Here the input layer contains 2 input neurons and output layer contains 2 

output neurons. Various numbers of hidden nodes are considered and the program was 

executed. After few runs it was seen that 8 hidden nodes are sufficient to get the desired 

result. As such for the first problem (with accuracy of 0.001), the desired and FNN results 

for 10 data among all are included in Tables 4.5(a) and 4.5(b). These tables are plotted as 

TFN (Triangular Fuzzy Number) in Figures 4.9(a) and 4.9(b) for 5 data. For second 

problem, the data are tabulated in Tables 4.6(a) and 4.6(b) and are plotted as TFN in 

Figures 4.10(a) and 4.10(b) for 5 data. 

 

Table 4.5(a): Comparison of desired and FNN value for ambient vibration with crisp 

initial condition for 111 ,, kckk  

Data 

No. 
1k

 
(FNN) 

1k  

(Des) 

Deviation 

% 
ck1  

( FNN) 

ck1  
(Des) 

Deviation 

% 
1k  

( FNN) 

1k  
(Des) 

Deviation 

% 

1 2167.9821 2196.8551 1.31 2395.5009 2397.2454 0.07 2918.4387 2950.8944 1.09 

2 2156.3645 2152.1872 -0.19 2442.3961 2443.9642 0.06 2985.6778 2977.384 -0.27 

3 2040.4593 2035.135 -0.26 2055.1361 2060.0188 0.23 2283.5102 2285.322 0.07 

4 2389.8985 2431.1123 1.69 2839.5843 2866.7499 0.94 2936.7227 2944.5809 0.26 

5 2186.7706 2194.1003 0.33 2242.2977 2243.7704 0.06 2627.6441 2631.1887 0.13 

6 2325.1742 2355.0737 1.26 2398.3027 2393.5638 -0.19 2721.1542 2735.7753 0.53 

7 2103.1454 2107.5003 0.20 2380.0314 2380.3627 0.01 2996.9129 2997.0033 0.00 

8 2304.007 2224.1715 -3.58 2656.3394 2660.1165 0.14 2903.6481 2851.5601 -1.82 

9 2186.9704 2200.6169 0.62 2633.3905 2652.4511 0.71 2745.2227 2744.2297 -0.03 

10 2069.4259 2065.0511 -0.21 2596.2003 2581.0259 -0.5 2599.6623 2604.9906 0.20 
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Table 4.5(b): Comparison of desired and FNN value for ambient vibration with crisp 

initial condition for 222 ,, kckk  

Data 

No. 
2k

 
( FNN) 

2k  

(Des) 

Deviation 

% 
ck2  

( FNN) 

ck2  
(Des) 

Deviation 

% 

 

2k  
( FNN) 

 

2k  
(Des) 

Deviation 

% 

1 1052.5241 1049.992 -0.24 1382.3412 1393.3063 0.07 1749.057 1723.1735 -0.01 

2 1346.2086 1347.4376 0.09 1560.4724 1555.6642 -0.03 1630.5815 1627.2792 -0.20 

3 1106.8461 1107.0772 0.02 1591.2028 1585.4949 -0.03 1659.9549 1660.6168 0.03 

4 1385.9187 1383.8686 -0.14 1538.0404 1540.0517 0.13 1829.7184 1822.0914 -0.41 

5 1285.0788 1285.0698 -0.00 1625.378 1627.3465 0.12 1982.1358 2009.1449 0.01 

6 1021.6113 1021.6498 0.00 1084.868 1086.9463 0.19 1265.4937 1258.629 0.54 

7 1461.8393 1461.6388 -0.01 1901.5472 1910.57 0.47 1953.1503 1959.3984 0.31 

8 1037.8535 1038.1775 0.03 1251.0481 1237.7128 -0.01 1774.4738 1800.5587 0.01 

9 1714.5838 1703.8386 -0.63 1733.1448 1745.8475 0.72 1861.557 1814.4496 -0.02 

10 1772.0203 1803.7365 1.75 1827.4152 1813.1128 -0.78 1940.5288 1996.1042 0.02 
 

 

 

Figure 4.9(a): TFN for ambient vibration with crisp initial condition for    hh
kk 11 ,  

 

Figure 4.9(b): TFN for ambient vibration with crisp initial condition for    hh
kk 22 ,  
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Table 4.6(a): Comparison of desired and FNN value for ambient vibration with crisp 

initial condition for 111 ,, kckk   

Data 

No. 
1k

 
( FNN) 

1k   

(Des) 

Deviation 

% 
ck1  

( FNN) 

ck1

(Des) 

Deviation 

% 
1k  

( FNN) 

1k   

(Des) 

Deviation 

% 

1 2452.0789 2452.7854 0.02 2550.8584 2550.8579 -0.00 2592.76 2593.4564 0.02 

2 2643.7267 2644.3095 0.02 2653.0107 2652.4023 -0.02 2868.7481 2871.4311 0.09 

3 2491.1864 2490.2704 -0.03 2902.2437 2897.7961 -0.15 2950.3716 2941.2579 -0.30 

4 2414.8809 2417.0538 0.08 2569.503 2569.2282 -0.01 2712.4648 2720.0525 0.27 

5 2547.8591 2547.7127 -0.00 2924.5316 2946.3401 0.74 3045.8268 3041.7212 -0.13 

6 2349.0473 2349.9973 0.04 2604.0824 2604.7075 0.02 2650.1936 2649.9214 -0.01 

7 2747.0409 2786.0921 1.40 2900.6723 2893.4159 -0.25 3070.1667 3107.771 1.21 

8 2465.533 2462.1453 -0.13 2609.2892 2611.183 0.07 2936.8073 2914.0474 -0.78 

9 2245.9988 2244.4541 -0.06 2652.5665 2652.3054 -0.00 2994.1723 2989.1144 -0.16 

10 2229.4976 2229.5776 0.00 2617.4106 2616.7915 -0.02 2947.1434 2954.9333 0.26 

 

 

Table 4.6(b): Comparison of desired and FNN value for ambient vibration with crisp 

initial condition for 222 ,, kckk  

 

 

 

Data 
No. 

2k
 

( FNN) 

2k
 

(Des) 

Deviation 
% 

ck2  
( FNN) 

ck2

(Des) 

Deviation 
% 

2k  
( FNN) 

2k  
(Des) 

Deviation 
% 

1 1864.4554 1868.7057 0.22 1879.8603 1878.8543 -0.05 1908.595 1908.5141 -0.00 

2 1277.3513 1277.2535 -0.00 1855.9477 1855.0771 -0.04 1943.3948 1945.5838 0.11 

3 1477.1244 1477.3955 0.01 1914.1053 1909.963 -0.21 2031.7836 1971.9805 -3.03 

4 1316.0031 1316.0189 0.00 1439.241 1438.5242 -0.04 2036.8438 2099.8722 3.00 

5 1624.9836 1624.4235 -0.03 1653.2142 1654.0641 0.05 1881.2284 1890.4072 0.48 

6 1210.3236 1209.9507 -0.03 1973.5848 1994.281 1.03 2022.2013 2049.3039 1.32 

7 1232.0312 1231.7057 -0.02 1428.5537 1427.5654 -0.06 1694.1558 1698.0261 0.22 

8 1256.4596 1256.2925 -0.01 1265.1769 1264.7523 -0.03 1782.3289 1771.2644 -0.62 

9 1309.4382 1309.8628 0.03 1540.1715 1538.645 -0.09 1808.0597 1798.6523 -0.52 

10 1517.1897 1516.9548 -0.01 1614.0209 1615.177 0.07 1922.9195 1933.5006 0.54 
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Figure 4.10(a): TFN for ambient vibration with crisp initial condition for    hh
kk 11 ,  

 

Figure 4.10(b): TFN for ambient vibration with crisp initial condition for   hh
kk 22 ,  

 

Examples for case (ii): 

In case (ii), two problems have been solved for two storey shear structure. Here the system 

is subjected to initial condition expressed by the vector (with zero displacement) in fuzzy 

form as    T
xcxx )8,10,12(12,10,8)0(),0(,)0(  . The masses are kept 

constant for both the problems and are taken as

1and1 222111  mcmmmcmm . The initial fuzzified stiffness parameter for 

first problem is considered as  2020,2010,2000ˆ
1 k  and  1020,1010,1000ˆ

2 k and for 

the second example the initial stiffness in fuzzy form are taken as  2220,2210,2200ˆ
1 k
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and  1120,1110,1100ˆ
2 k . 60 sets of data for both responses and structural parameters 

are generated from these initial fuzzy stiffness parameters. In this case the neural network 

architecture is similar as in case (i). Again various numbers of hidden nodes are taken as 

per the desired accuracy and finally 10 hidden nodes are found to be sufficient to get an 

accuracy of 0.001. After training 10 trained data among 60 are incorporated for 

comparison of the desired and FNN values for the first problem in Tables 4.7(a) and 

4.7(b). These tables have been plotted as TFN in Figures 4.11(a) and 4.11(b) for 5 data. 

For second problem comparison between the desired and FNN values for 10 data among 

60 data have been tabulated in Tables 4.8(a) and 4.8(b). These tables are plotted as TFN in 

Figures 4.12(a) and 4.12(b) for 5 data. 

 

Table 4.7(a): Comparison of desired and FNN value for ambient vibration with fuzzy 

initial condition for 111 ,, kckk  

Data 
No. 

1k
 

( FNN) 

1k  

(Des) 

Deviation 
% 

ck1  
( FNN) 

ck1
 

(Des) 

Deviation 
% 

1k  
( FNN) 

1k  
(Des) 

Deviation 
% 

1 2712.4432 2720.6895 0.30 2740.2729 2740.9997 0.02 2991.8529 3004.207 0.41 

2 2341.1669 2339.3179 -0.07 2884.3239 2912.9671 0.98 2924.7706 2937.651 0.43 

3 2055.0991 2053.022 -0.10 2411.9965 2416.0909 0.16 2746.0776 2746.0249 -0.00 

4 2193.4089 2193.7959 0.01 2556.6636 2557.716 0.04 2604.2448 2605.5213 0.04 

5 2011.5635 2011.4941 -0.00 2907.4145 2947.057 1.34 2954.3946 2972.2081 0.59 

6 2135.0845 2135.5559 0.02 2375.4562 2380.7479 0.22 2730.3737 2734.7614 0.16 

7 2108.9329 2111.2523 0.10 2466.566 2469.3742 0.11 2627.2043 2628.769 0.05 

8 2381.8233 2382.333 0.02 2505.8781 2506.9169 0.04 2852.4095 2851.3387 -0.03 

9 2185.5594 2185.5842 0.00 2245.5523 2246.8234 0.05 2302.7568 2304.1591 0.06 

10 2065.9854 2065.1411 -0.04 2278.5417 2277.3245 -0.05 2432.1578 2431.3957 -0.03 
 

Table 4.7(b): Comparison of desired and FNN value for ambient vibration with fuzzy 

initial condition for 222 ,, kckk . 

Data 

No. 
2k

 
( FNN) 

2k
 

(Des) 

Deviation 

% 
ck2  

( FNN) 

ck2
  

(Des) 

Deviation 

% 
2k  

( FNN) 

2k  
(Des) 

Deviation 

% 

1 1001.7499 1001.7441 -0.00 1174.3756 1174.3606 -0.00 1658.16 1658.1989 0.00 

2 1393.5595 1390.5963 -0.21 1755.8986 1763.2508 0.41 1866.5971 1850.7432 -0.85 

3 1028.7436 1027.1498 -0.15 1241.5602 1242.8138 0.10 1781.5498 1763.7961 -1.00 

4 1016.1336 1015.6761 -0.04 1044.8147 1046.2616 0.13 1849.3909 1854.0591 0.25 

5 1124.9853 1123.7487 -0.11 1200.824 1201.0798 0.02 1782.1465 1781.8965 -0.01 

6 1082.2105 1080.4416 -0.16 1264.1739 1263.8489 -0.02 1300.3199 1299.1074 -0.09 

7 1074.5898 1078.0735 0.32 1711.6886 1710.6337 -0.06 1956.9678 2017.1184 2.98 

8 1572.4641 1591.2451 1.18 1675.2801 1674.9342 -0.02 1915.8622 1923.0426 0.37 

9 1137.2544 1137.8338 0.05 1495.6981 1496.1279 0.02 2015.6705 1954.8971 -3.10 

10 1278.0244 1277.9735 -0.00 1492.2765 1492.9389 0.04 1855.291 1844.7672 -0.57 
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Figure 4.11(a): TFN for ambient vibration with fuzzy initial condition for    hh
kk 11 ,  

 

Figure 4.11(b): TFN for ambient vibration with fuzzy initial condition for    hh
kk 22 ,  

 

Table 4.8(a): Comparison of desired and FNN value for ambient vibration with fuzzy 

initial condition for 111 ,, kckk  

Data 

No. 
1k

 
( FNN) 

1k
 

(Des) 

Deviation 

% 
ck1  

( FNN) 

ck1
 

(Des) 

Deviation 

% 
1k  

( FNN) 

1k  
(Des) 

Deviation 

% 

1 2450.1683 2452.7854 0.10 2550.3655 2550.8579 0.01 2593.4768 2593.4564 -0.00 

2 2627.7658 2644.3095 0.62 2657.3922 2652.4023 -0.18 2854.747 2871.4311 0.58 

3 2489.5777 2490.2704 0.02 2899.467 2897.7961 -0.05 2950.4275 2941.2579 -0.31 

4 2410.4906 2417.0538 0.27 2572.5709 2569.2282 -0.13 2711.6029 2720.0525 0.31 

5 2554.0384 2547.7127 -0.24 2917.3193 2946.3401 0.98 3049.7731 3041.7212 -0.26 

6 2352.0903 2349.9973 -0.08 2599.3815 2604.7075 0.20 2656.5113 2649.9214 -0.24 

7 2680.6273 2786.0921 3.78 2866.7292 2893.4159 0.92 3048.2152 3107.771 1.91 

8 2494.5878 2462.1453 -1.31 2600.9786 2611.183 0.39 2970.086 2914.0474 -1.92 

9 2244.8626 2244.4541 -0.01 2661.3343 2652.3054 -0.34 2991.2942 2989.1144 -0.07 

10 2228.7874 2229.5776 0.03 2620.263 2616.7915 -0.13 2941.8077 2954.9333 0.44 
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Table 4.8(b): Comparison of desired and FNN value for ambient vibration with fuzzy 

initial condition for 222 ,, kckk  

Data 

No. 
2k

 
( FNN) 

2k  

(Des) 

Deviation 

% 
ck2  

( FNN) 

ck2
 

(Des) 

Deviation 

% 
2k  

(FNN) 

2k  

(Des) 

Deviation 

% 

1 1859.8134 1868.7057 0.47 1885.5137 1878.8543 -0.35 1908.7286 1908.5141 -0.01 

2 1277.6131 1277.2535 -0.02 1858.867 1855.0771 -0.20 1933.3046 1945.5838 0.63 

3 1474.2994 1477.3955 0.20 1930.3145 1909.963 -1.06 2037.056 1971.9805 -3.30 

4 1316.7153 1316.0189 -0.05 1443.1725 1438.5242 -0.32 2039.701 2099.8722 2.86 

5 1629.9065 1624.4235 -0.33 1650.5398 1654.0641 0.21 1879.3819 1890.4072 0.58 

6 1211.7234 1209.9507 -0.14 1952.9784 1994.281 2.07 2033.7778 2049.3039 0.75 

7 1231.0913 1231.7057 0.04 1434.0897 1427.5654 -0.45 1691.6876 1698.0261 0.37 

8 1257.4988 1256.2925 -0.09 1264.1406 1264.7523 0.04 1783.453 1771.2644 -0.68 

9 1308.3423 1309.8628 0.11 1541.9572 1538.645 -0.21 1809.8501 1798.6523 -0.62 

10 1518.0058 1516.9548 -0.06 1612.0433 1615.177 0.19 1925.4892 1933.5006 0.41 

 

 

Figure 4.12(a): TFN for ambient vibration with fuzzy initial condition for    hh
kk 11 ,  

 

Figure 4.12(b): TFN for ambient vibration with fuzzy initial condition for    hh
kk 22 ,  
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Examples for case (iii): 

Similarly we consider the problem with the horizontal displacement function. The 

identification of stiffness in fuzzy form from fuzzified responses with zero initial 

condition and forcing function in crisp form are considered in case (iii). The forcing 

function vector in crisp form is defined as   T
tttF  6.1sin100)6.1sin(100)(  . 

Again two problems have been considered for this case. The initial fuzzified stiffness 

parameter used to train the first problem have values as  2020,2010,2000ˆ
1 k and 

 1020,1010,1000ˆ
2 k  and for second problem, the initial fuzzified stiffness are 

considered as  2220,2210,2200ˆ
1 k  and  1120,1110,1100ˆ

2 k . The masses are kept 

constant as that of the above cases. Here 80 sets of data for both responses and stiffness 

parameters have been generated using these initial fuzzified structural parameters. These 

80 training pattern are used for training with 12 hidden nodes so as to get an accuracy of 

0.001. Again 10 trained data among 80 are included in Tables 4.9(a) and 4.9(b) in order to 

compare the desired and FNN values for the first problem and are plotted as TFN in 

Figures 4.13(a) and 4.13(b) again for 5 data. Similarly the results for the second example 

are tabulated in Tables 4.10(a) and 4.10(b) and are plotted as TFN in Figures 4.14(a) and 

4.14(b) for 5 data. 

 

Table 4.9(a): Comparison of desired and FNN value for forced vibration with crisp forcing 

function for 111 ,, kckk   

Data 

No. 
1k  

(FNN) 

1k  

(Des) 

Deviation 

% 
ck1  

( FNN) 

ck1
 

(Des) 

Deviation 

% 
1k  

(FNN) 

1k  

(Des) 

Deviation 

% 

1 2136.3878 2136.5531 0.00 2708.0485 2708.7458 0.02 2823.94 2825.4894 0.05 

2 2213.4196 2207.8098 -0.25 2582.0387 2596.7215 0.56 2718.408 2721.2275 0.10 

3 2028.9696 2040.5409 0.56 2103.9664 2106.7619 0.13 2198.3539 2202.9225 0.20 

4 2249.4018 2259.932 0.46 2668.0384 2653.7573 -0.53 2762.1808 2754.0743 -0.29 

5 2489.4993 2494.1739 0.18 2511.5788 2510.0224 -0.06 2920.8248 2906.5119 -0.49 

6 2054.8604 2048.6742 -0.30 2485.551 2489.9221 0.17 2771.0529 2779.0517 0.28 

7 2481.5327 2509.9014 1.13 2744.4885 2715.0371 -1.08 2952.6467 2914.7222 -1.30 

8 2203.6758 2187.9271 -0.71 2612.5518 2619.8666 0.27 2888.4125 2903.7206 0.52 

9 2626.2226 2627.6664 0.05 2856.1899 2890.9225 1.20 2973.6323 2998.6806 0.83 

10 2332.6513 2334.1631 0.06 2734.1007 2732.6945 -0.05 2867.9343 2869.4423 0.05 
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Table 4.9(b): Comparison of desired and FNN value for forced vibration with crisp forcing 

function for 222 ,, kckk  

Data 

No. 
2k

 
 (FNN) 

2k   

(Des) 

Deviation 

% 
ck2  

( FNN) 

ck2
  

(Des) 

Deviation 

% 
2k  

 (FNN) 

2k  
 (Des) 

Deviation 

% 

1 1103.3733 1103.4698 0.00 1500.7006 1500.4716 -0.01 1729.8432 1732.4396 0.14 

2 1152.0276 1153.171 0.09 1162.5774 1159.8654 -0.23 1485.1404 1471.0884 -0.95 

3 1061.0412 1059.6189 -0.13 1198.3835 1193.3886 -0.41 1659.074 1669.6053 0.63 

4 1408.6154 1410.9378 0.16 1520.9071 1528.5949 0.50 1669.3995 1681.9719 0.74 

5 1038.8641 1042.4311 0.34 1823.6153 1851.3797 1.49 1952.7087 1982.9746 1.52 

6 1066.1754 1071.4455 0.49 1667.7389 1658.9915 -0.52 1883.8507 1823.3644 -3.31 

7 1080.1584 1080.4712 0.02 1512.9429 1521.6498 0.57 1769.0166 1810.3306 2.28 

8 1090.8478 1096.73 0.53 1418.1741 1419.2578 0.07 1460.9109 1463.7977 0.19 

9 1440.2397 1442.3915 0.14 1549.0449 1546.8758 -0.14 1832.9351 1818.1486 -0.81 

10 1439.8274 1436.7995 -0.21 1818.0987 1817.5471 -0.03 1827.8668 1835.3138 0.40 
 

 

Figure 4.13(a): TFN for forced vibration with crisp forcing function for    hh
kk 11 ,  

 

Figure 4.13(b): TFN for forced vibration with crisp forcing function for    hh
kk 22 ,  
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Table 4.10(a): Comparison of desired and FNN value for forced vibration with crisp 

forcing function for 111 ,, kckk  

Data 

No. 
1k   

(FNN) 

1k
 

 (Des) 

Deviation 

% 
ck1  

( FNN) 

ck1  
(Des) 

Deviation 

% 
1k   

(FNN) 

1k  
 (Des) 

Deviation 

% 

1 2614.794 2600.9378 -0.53 2657.854 2651.6512 -0.23 2725.9658 2718.5949 -0.27 

2 2237.7572 2235.4871 -0.10 2996.1695 3041.3797 1.48 3167.844 3172.9746 0.16 

3 2809.4457 2848.9915 1.38 2982.6746 3013.3644 1.01 3158.9261 3204.0637 1.40 

4 2278.5684 2270.4712 -0.35 2398.4785 2387.1684 -0.47 3118.8233 3000.3306 -3.94 

5 2318.154 2326.2163 0.34 2597.9402 2609.2578 0.43 2647.5255 2653.7977 0.23 

6 2609.0385 2592.4097 -0.64 2646.3188 2632.3915 -0.52 2751.5342 2736.8758 -0.53 

7 2403.9125 2418.1184 0.58 2623.576 2626.7995 0.12 2998.4058 3025.3138 0.88 

8 2281.515 2283.4698 0.08 2710.6778 2709.6876 -0.03 2865.1965 2866.8599 0.05 

9 2336.7559 2333.171 -0.15 2564.2437 2559.4934 -0.18 2845.6772 2837.9734 -0.27 

10 2370.5161 2373.3886 0.12 2495.5118 2501.9841 0.25 3116.6444 3171.6305 1.73 

 

Table 4.10(b): Comparison of desired and FNN value for forced vibration with crisp 

forcing function for 222 ,, kckk  

Data 
No. 

2k
 

 (FNN) 

2k   

(Des) 

Deviation 
% 

ck2  
( FNN) 

ck2  
 (Des) 

Deviation 
% 

2k   

(FNN) 

2k   

(Des) 

Deviation 
% 

1 1661.3052 1681.1998 1.18 1812.5259 1811.0988 -0.07 2026.268 2020.332 -0.29 

2 1152.4887 1152.677 0.01 1778.5541 1776.3389 -0.12 2002.2421 2001.8665 -0.01 

3 1676.4244 1649.1265 -1.65 1789.8393 1789.1753 -0.03 1836.5096 1837.8581 0.07 

4 1302.1777 1310.4333 0.62 1367.3487 1369.1194 0.12 1807.2617 1808.1055 0.04 

5 1496.1721 1488.9165 -0.48 1524.9724 1522.8356 -0.14 1773.5072 1776.5279 0.17 

6 1281.5658 1288.1325 0.50 1583.2043 1580.7259 -0.15 1647.7504 1647.8709 0.00 

7 1242.0437 1238.0144 -0.32 2016.0422 2042.737 1.30 2088.4795 2101.638 0.62 

8 1277.2321 1276.405 -0.06 1518.6201 1517.7441 -0.05 2100.8337 2109.0804 0.39 

9 1278.9354 1281.1211 0.17 2042.633 1975.5228 -3.39 2109.0231 2083.0525 -1.24 

10 1146.158 1142.6008 -0.31 1403.0615 1401.4549 -0.11 1765.6606 1764.7645 -0.05 
 

 

 

Figure 4.14(a): TFN for forced vibration with crisp forcing function for    hh
kk 11 ,  
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Figure 4.14(b): TFN for forced vibration with crisp forcing function for    hh
kk 22 ,  

 

Examples for case (iv): 

Next, in case (iv), the forcing function vector in fuzzy form with zero initial condition is 

defined as. 

 
 

T

ttt

ttt
tF







 


)6.1sin(110),6.1sin(100),6.1sin(90

)6.1sin(110),6.1sin(100,)6.1sin(90
)(ˆ




 

Again two problems have been solved considering the masses and stiffnesses as in the 

previous cases. Here 100 data sets are trained with 15 hidden nodes in a single hidden 

layer so as to get an accuracy of 0.001. Comparison between the desired and FNN values 

for 10 data among 100 sets of data have been incorporated in Tables 4.11(a) and 4.11(b) 

for first problem. These tables are plotted as TFN in Figures 4.15(a) and 4.15(b) for 5 data. 

Similarly, results of second problem have been tabulated in Tables 4.12(a) and 4.12(b) and 

are plotted as TFN in Figures 4.16(a) and 4.16(b) again for 5 data.  
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Table 4.11(a): Comparison of desired and FNN value for forced vibration with fuzzy 

forcing function for 111 ,, kckk  

Data 

No. 
1k

 
 (FNN) 

1k   

(Des) 

Deviation 

% 
ck1  

( FNN) 

ck1  
 (Des) 

Deviation 

% 
1k  

 (FNN) 

1k   

(Des) 

Deviation 

% 

1 2115.7122 2117.4929 0.08 2772.6421 2791.9339 0.69 2899.2965 2876.9303 -0.77 

2 2089.2616 2096.2345 0.33 2226.3707 2225.6745 -0.03 2630.1728 2640.7179 0.39 

3 2325.1569 2328.8142 0.15 2380.6635 2376.4366 -0.17 2401.1587 2408.2716 0.29 

4 2393.9273 2379.1988 -0.61 2572.4426 2571.7785 -0.02 2659.2466 2653.812 -0.20 

5 2252.9072 2248.9533 -0.17 2699.8276 2695.0285 -0.17 2758.2341 2749.1315 -0.33 

6 2577.9237 2583.1857 0.20 2612.4951 2607.9416 -0.17 2659.2828 2661.9406 0.09 

7 2485.4321 2504.4804 0.76 2714.0388 2740.0323 0.94 2800.4727 2799.3639 -0.03 

8 2170.7521 2171.8455 0.05 2230.0568 2234.8269 0.21 2392.2718 2377.6529 -0.61 

9 2216.1262 2216.0279 -0.00 2752.5605 2734.9575 -0.64 2801.4019 2801.932 0.01 

10 2097.3132 2096.6665 -0.03 2119.1431 2120.6063 0.06 2952.4424 2970.5985 0.61 

 

Table 4.11(b): Comparison of desired and FNN value for forced vibration with fuzzy 

forcing function for 222 ,, kckk  

Data 
No. 

2k   

(FNN) 

2k   

(Des) 

Deviation 
% 

ck2  
(FNN) 

ck2
  

(Des) 

Deviation 
% 

2k   

(FNN) 

2k   

(Des) 

Deviation 
% 

1 1295.308 1294.0663 -0.09 1798.6636 1817.8303 1.05 1934.1169 1974.4227 2.04 

2 1239.5249 1237.373 -0.17 1428.6221 1442.485 0.96 1511.3849 1507.6038 -0.25 

3 1502.7485 1530.8723 1.83 1759.7085 1704.7522 -3.22 1782.7926 1788.9583 0.34 

4 1088.5777 1091.4987 0.26 1435.6669 1416.0067 -1.38 1744.2078 1768.0993 1.35 

5 1293.5141 1292.9388 -0.04 1404.6348 1405.3154 0.04 1443.3676 1442.6423 -0.05 

6 1058.1286 1057.2346 -0.08 1101.3682 1104.8462 0.31 1693.6749 1665.498 -1.69 

7 1112.7571 1112.284 -0.04 1134.9847 1119.7551 -1.36 1648.9866 1693.2949 2.61 

8 1460.6378 1449.5645 -0.76 1761.8366 1784.4279 1.26 1906.7613 1943.7598 1.90 

9 1195.3196 1197.4608 0.17 1277.2241 1291.5703 1.11 1471.6221 1471.7392 0.00 

10 1275.8824 1276.1788 0.02 1598.1384 1603.5334 0.33 1638.0726 1629.8572 -0.50 
 

 

Figure 4.15(a): TFN for forced vibration with fuzzy forcing function for    hh
kk 11 ,  
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Figure 4.15(b): TFN for forced vibration with fuzzy forcing function for    hh
kk 22 ,  

 

Table 4.12(a): Comparison of desired and FNN value for forced vibration with fuzzy 

forcing function for 111 ,, kckk  

Data 

No. 
1k

 
 (FNN) 

1k
 

 (Des) 

Deviation 

% 
ck1  

( FNN) 

ck1  
 (Des) 

Deviation 

% 
1k   

(FNN) 

1k   

(Des) 

Deviation 

% 

1 2343.7788 2336.5531 -0.30 2925.0914 2908.7458 -0.56 3020.7684 3025.4894 0.15 

2 2465.6244 2407.8098 -2.40 2784.1906 2796.7215 0.44 2934.6894 2921.2275 -0.46 

3 2235.6757 2240.5409 0.21 2320.6483 2306.7619 -0.60 2415.9846 2402.9225 -0.54 

4 2480.8046 2459.932 -0.84 2838.5157 2853.7573 0.53 2951.9008 2954.0743 0.07 

5 2704.8557 2694.1739 -0.39 2715.0265 2710.0224 -0.18 3096.5705 3106.5119 0.32 

6 2297.2588 2248.6742 -2.16 2678.9873 2689.9221 0.40 2985.5553 2979.0517 -0.21 

7 2622.3973 2709.9014 3.22 2924.5746 2915.0371 -0.32 3098.2496 3114.7222 0.52 

8 2386.5461 2387.9271 0.05 2832.6454 2819.8666 -0.45 3077.5387 3103.7206 0.84 

9 2805.8481 2827.6664 0.77 3070.2154 3090.9225 0.66 3188.7561 3198.6806 0.31 

10 2522.7177 2534.1631 0.45 2943.0726 2932.6945 -0.35 3115.8346 3069.4423 -1.51 
 

 

Table 4.12(b): Comparison of desired and FNN value for forced vibration with fuzzy 

forcing function for 222 ,, kckk  

Data 
No. 

2k   

(FNN) 

2k   

(Des) 

Deviation 
% 

ck2  
(FNN) 

ck2
  

(Des) 

Deviation 
% 

2k   

(FNN) 

2k   

(Des) 

Deviation 
% 

1 1215.656 1203.4698 -1.01 1590.7598 1600.4716 0.60 1814.1133 1832.4396 1.00 

2 1267.9885 1253.171 -1.18 1265.0985 1259.8654 -0.41 1570.3198 1571.0884 0.04 

3 1185.62 1159.6189 -2.24 1283.0525 1293.3886 0.79 1760.2019 1769.6053 0.53 

4 1467.1961 1510.9378 2.89 1644.8809 1628.5949 -1.00 1803.5189 1781.9719 -1.20 

5 1146.6204 1142.4311 -0.36 1932.7711 1951.3797 0.95 2052.817 2082.9746 1.44 

6 1178.2138 1171.4455 -0.57 1778.4556 1758.9915 -1.10 1936.4008 1923.3644 -0.67 

7 1189.0004 1180.4712 -0.72 1617.8357 1621.6498 0.23 1920.1467 1910.3306 -0.51 

8 1198.9945 1196.73 -0.18 1518.4555 1519.2578 0.05 1565.9976 1563.7977 -0.14 

9 1532.9409 1542.3915 0.61 1645.0711 1646.8758 0.10 1916.8517 1918.1486 0.06 

10 1537.5921 1536.7995 -0.05 1897.5134 1917.5471 1.04 1929.6035 1935.3138 0.29 
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Figure 4.16(a): TFN for forced vibration with fuzzy forcing function for    hh
kk 11 ,  

 
 

Figure 4.16(b): TFN for forced vibration with fuzzy forcing function for    hh
kk 22 ,  

 

Examples for case (v) (Testing case):  

Finally, in case (v), two examples of a two storey shear structure for comparing the testing 

values (which are not used in the training) of desired and FNN values in fuzzified form are 

considered for both ambient vibration and Forced vibration. These test values are fed into 

the neural network along with the stored (converged) weights to generate corresponding 

stiffness parameters. The neural network architecture as well as the training pattern used 

for the first problem were that of case (ii) and for the second problem the training pattern 
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are similar to that of case (iv). Comparison between the test values of desired and FNN for 

ambient vibration with the initial condition in fuzzified form for 10 data are incorporated 

in Tables 4.13(a) and 4.13(b). Again comparison between the test values of desired and 

FNN for forced vibration with the forcing function in fuzzified form have been given in 

Tables 4.14(a) and 4.14(b). 

It may be seen that the neural results are comparable with the desired ones and the 

deviations in percentage between them have also been shown in all the tables. 

Table 4.13(a): Comparison of desired and FNN value of testing data for ambient vibration 

with fuzzy initial condition for 111 ,, kckk . 

Data 
No. 

1k   

(FNN) 

1k   

(Des) 

Deviation 
% 

ck1  
(FNN) 

ck1
  

(Des) 

Deviation 
% 

1k   

(FNN) 

1k  
 (Des) 

Deviation 
% 

1 2174.7997 2167.6131 -0.33 2680.7162 2675.7407 -0.18 2859.3327 2814.7237 -1.58 

2 2050.3589 2055.7117 0.26 2923.9713 2905.7919 -0.62 2972.4337 2980.5928 0.27 

3 2142.4909 2126.9868 -0.72 2864.1349 2869.1293 0.17 2931.6114 2967.1669 1.19 

4 2468.1327 2495.3756 1.09 2898.7087 2913.3759 0.50 2928.584 2953.9932 0.86 

5 2651.3273 2632.3592 -0.72 2700.3598 2698.7352 -0.06 2810.0473 2810.2805 0.00 

6 2089.8352 2097.5404 0.36 2148.3035 2151.8863 0.16 2754.2708 2777.7401 0.84 

7 2278.3204 2278.4982 0.00 2434.9387 2431.7613 -0.13 2793.5458 2763.1325 -1.10 

8 2422.5316 2412.227 -0.42 2553.7105 2546.8815 -0.26 2909.9751 2925.7355 0.53 

9 2639.485 2675.4779 1.34 2799.262 2802.2073 0.10 2924.7594 2957.5068 1.10 

10 2207.0929 2191.1867 -0.72 2942.6106 2964.8885 0.75 2972.4436 2969.4924 -0.09 

 

 

Table 4.13(a): Comparison of desired and FNN value of testing data for ambient vibration 

with fuzzy initial condition for 222 ,, kckk  

Data 

No. 
2k

 
(FNN) 

2k (Des) 
Deviation 

% 
ck2  

(FNN) 

ck2  
 (Des) 

Deviation 

% 
2k

 
(FNN) 

2k
 

(Des) 

Deviation 

% 

1 1312.4152 1296.0251 -1.26 1442.3685 1448.7444 0.44 1701.8707 1706.0461 0.24 

2 1040.7478 1031.8328 -0.86 1409.5532 1391.5585 -1.29 1687.0277 1699.7027 0.74 

3 1276.1957 1276.923 0.05 1654.1886 1675.098 1.24 1729.4283 1775.5168 2.59 

4 1050.3947 1046.1714 -0.40 1200.8051 1182.6117 -1.53 1790.4334 1805.1999 0.81 

5 1100.0156 1097.1318 -0.26 1149.9579 1138.9977 -0.96 1205.7938 1196.8726 -0.74 

6 1473.3246 1499.7644 1.76 1538.594 1518.3641 -1.33 1811.8321 1823.4578 0.63 

7 1482.1069 1455.5862 -1.82 1673.2063 1694.8286 1.27 1925.0262 1979.744 2.76 

8 1317.9178 1317.0995 -0.06 1363.3098 1360.3857 -0.21 1669.3333 1656.313 -0.78 

9 1578.2463 1605.2678 1.68 1715.7618 1719.3648 0.20 1923.608 1950.222 1.36 

10 1034.8191 1034.4461 -0.03 1239.7345 1243.8119 0.32 1774.8388 1764.6867 -0.57 
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Table 4.14(a): Comparison of desired and FNN value of testing data for forced vibration 

with fuzzy forcing function for 111 ,, kckk  

Data 

No. 
1k

 
 (FNN) 

1k   

(Des) 

Deviation 

% 
ck1  

(FNN) 

ck1
  

(Des) 

Deviation 

% 
1k   

(FNN) 
1k  (Des) 

Deviation 

% 

1 2606.5245 2610.6291 0.15 2903.914 2890.1784 -0.47 2930.4785 2939.5701 0.30 

2 2775.2165 2737.8468 -1.36 3151.659 3184.3494 1.02 3184.1227 3216.1561 0.99 

3 2599.8702 2574.5343 -0.98 2636.5963 2621.5935 -0.57 3111.6694 3145.5792 1.07 

4 2726.6371 2712.6382 -0.51 2887.6096 2876.6447 -0.38 3175.5783 3191.2588 0.49 

5 2581.7431 2566.4488 -0.59 2944.0919 2960.5201 0.55 3211.6556 3188.3023 -0.73 

6 2729.6716 2793.5332 2.28 2984.8221 2966.8314 -0.60 3148.7835 3106.5439 -1.35 

7 2571.8335 2536.6993 -1.38 2689.7628 2674.6949 -0.56 2745.6539 2761.7925 0.58 

8 2651.0194 2633.4273 -0.66 2767.9257 2793.5706 0.91 2888.2044 2862.3819 -0.90 

9 2437.3052 2437.7321 0.01 2437.8596 2444.1653 0.25 2727.487 2721.8199 -0.20 

10 2283.5792 2292.5927 0.39 2347.4621 2345.6546 -0.07 2497.0013 2495.5073 -0.05 

 

 

Table 4.14(b): Comparison of desired and FNN value of testing data for forced vibration 

with fuzzy forcing function for 222 ,, kckk  

Data 

No. 
2k

 
(FNN) 

2k
 

(Des) 

Deviation 

% 
ck2  

(FNN) 

ck2
 

(Des) 

Deviation 

% 
2k  

(FNN) 

2k  

(Des) 

Deviation 

% 

1 1407.5404 1408.9146 0.09 1820.2395 1814.3396 -0.32 1889.6371 1886.9217 -0.14 

2 1810.2488 1826.1044 0.86 1822.0224 1839.513 0.95 2023.1157 2054.4783 1.52 

3 1224.4351 1227.8889 0.28 1333.8205 1334.2771 0.03 1868.3794 1882.8721 0.76 

4 1305.7017 1302.2275 -0.26 1384.7555 1379.0547 -0.41 1800.5751 1793.7876 -0.37 

5 1106.6943 1109.8023 0.28 1219.0247 1219.0953 0.00 1779.6545 1783.0312 0.18 

6 1593.7799 1587.4922 -0.39 1623.4222 1609.7638 -0.84 1969.8186 1943.2133 -1.36 

7 1307.7088 1313.2453 0.42 1751.4163 1733.7164 -1.02 2010.2226 2022.332 0.59 

8 1346.9579 1346.4449 -0.03 1799.8936 1800.9542 0.05 2014.6625 2015.8916 0.06 

9 1144.6688 1142.6599 -0.17 1213.3021 1219.0896 0.47 1280.5553 1287.1238 0.51 

10 1165.6446 1164.1656 -0.12 1475.931 1478.1861 0.15 1964.6192 1939.6434 -1.28 

4.6 Conclusion 

Protection of various structures against the effect of earthquake is an interdisciplinary 

research where the knowledge, skills and experience of earthquake along with structural 

engineers assisted by architects, art historians, material scientists and applied 

mathematicians are required. Health monitoring, system identification, theoretical and 

experimental assessment of structural performance, design, testing and implementation of 

retrofit are some of the main steps of any modern earthquake protection methodology for 

conservation of structures. As such after a long span of time, structures deteriorate due to 

application of various manmade and natural hazards such as earthquake etc. So, it is a 

challenging task to know the present health of the above structures to avoid failure. Hence 
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the present study demonstrates application of fuzzy neural network (FNN) with solution of 

forward vibration problem for the identification of uncertain structural parameters of 

multi-storey shear buildings utilizing uncertain design parameters of the system by a 

proposed FNN methodology. Here forward problem for each time step is solved for a 

given input to the system, rather than solving the inverse vibration problem. Thus the 

solution vector is generated. The initial uncertain design parameters (viz. stiffness, mass) 

are known and so the initial responses of the said problem are also known. The initial 

values of the physical parameters (in uncertain viz. fuzzy form) of the system are used to 

obtain the responses in fuzzified form. Responses and the corresponding parameters are 

used as the input/output in the neural net. It is assumed that only the stiffness is changed 

and the mass remains the same. The present values of the responses may be obtained by 

available experiments and using these one may get the present parameter values by FNN. 

Although to train the new FNN model, set of data are generated numerically beforehand. 

As such converged FNN model gives the present stiffness parameter values in fuzzy form 

for each storey. Thus one may predict the health of the structure from the knowledge of 

the identified stiffness parameters in fuzzified form. Corresponding example problems 

have been solved and related results are reported to show the reliability and powerfulness 

of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

107 

 

Chapter 5 

System Identification through Seismic 

Data Using Interval and Fuzzy           

Neural Network 
 

Earthquakes are one of the most destructive natural phenomena which consist of rapid 

vibrations of rock near the earth’s surface. Usually the earthquake acceleration is noted 

from the equipment in crisp or exact form. But in actual practice those data may not be 

obtained exactly at each time step, rather those may be with some error. So those records 

at each time step are assumed here as interval and fuzzy. Using those interval and fuzzy 

acceleration data, the structural responses are found. The primary aim of the present study 

is to model Interval and Fuzzy Neural Network and to estimate structural response of 

single and multi-storey shear buildings by training the model for Indian earthquakes at 

Chamoli and Uttarkashi using interval and fuzzified ground motion data. The interval 

neural network is first trained for a real earthquake data viz. the ground acceleration as 

input and the numerically generated responses of different floors of multi-storey buildings 

as output. Till date no model exists to handle positive and negative data in the INN and 

FNN. As such here the bipolar data in [-1, 1] are converted first to unipolar form that is to 

[0, 1] by means of a novel transformation for the first time to handle the above training 

patterns in normalized form. Once the training is done, again the unipolar data are 

converted back to its bipolar form by using the inverse transformation. The trained INN 

and FNN architecture is then used to simulate and test the structural response of different 

floors for various intensity earthquake data and it is found that the predicted responses 

given by INN and FNN model are good for practical purposes. 

 

 

5.1 Response Analysis for Single Degree of Freedom System 

Subject to Ground Motion for Interval Case 
 

 

Basic concept behind the proposed methodology is to predict the structural response of 

uncertain (intervals) shear structural system subjected to uncertain earthquake forces. Two 

scenarios viz without damping and with damping have been considered for the analysis. 
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5.1.1 Without Damping 

 

Here we will discuss the procedure for an example problem of Single Degree of Freedom 

(SDOF) systems. Let M
~

 be the mass of the generalized one storey structure, K
~

 the 

stiffness of the structure and X
~

be the displacement relative to the ground all in interval 

form. Then the equation of motion may be written as 

                                              X
~

M
~   X

~
K
~

  a
~

M
~
                                                         (5.1) 

X
~
 = Acceleration in interval, 

X
~

= Displacement in interval, 

a
~
 = Ground acceleration in interval. 

Equation (5.1) may be written as, 

                                            a
~

X
~

ω~X
~

2                                                                      (5.2)   

where 2ω~  is the interval natural frequency parameter of the undamped structure. It may be 

noted that the above equation can be solved by Interval Duhamel integral. Here to obtain 

the solution for equation (5.2), the Duhamel integral are considered for different sets of 

lower and upper form. This is done to avoid complicacy raised while getting the above 

solution. And that is why now we will drop ‘~’ from all notations and will consider the 

case for lower form first and similarly for upper form. Hence Equation (5.2) in lower form 

is written as, 

                                                       aXωX 2                                                                 (5.3)   

where 
M

K
2ω  is the natural frequency parameter of the undamped structure in lower 

form. K  is the stiffness parameter and M  is the mass of the storey in lower form. 

                                            X = Acceleration in lower form, 

                                            X = Displacement in lower form, 

                                            a = Ground acceleration in lower form. 

Hence the solution of equation (5.3), Newmark and Rosenblueth [201] in lower form is 

written as 

                                                     

      dττtωsinτa
ω

1
tX

t

0

 

                                       

(5.4)  
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From this solution the response of the structure namely acceleration in lower form is 

obtained for no damping. In a similar fashion we can compute for upper form. 

 

5.1.2 With Damping 

 

Let M
~

 be the mass of the generalized one storey structure in interval form, K
~

 the 

stiffness of the structure in interval form, C
~

 the damping and X
~

 be the displacement 

relative to the ground all are in interval form. Then the equation of motion may be written 

as 

                                            X
~

M
~   X

~
C
~   X

~
K
~

 a
~

M
~
                                                   (5.5) 

Equation (5.5) may be written in lower form as, 

                                            
aXωXξω2X

2                                                      (5.6) 

where 
M

C
ξω  and 

M

K


2
ω  are the natural frequency parameter of the damped and 

undamped structure in lower form.C  is the damping and X is the velocity in lower form. 

Here also solution is obtained for different sets in lower and upper form. Hence the 

solution of equation (5.6) in lower form is given as 

                                    

        dτtωsinτtωξexpτa
ω

1
X(t)

t

0

 

                                  

(5.7) 

From this solution the response of the structure namely the acceleration in lower form with 

damping is obtained. In a similar manner we can compute for the upper form. Hence, the 

neural network architecture is constructed by taking the interval form of ground 

acceleration as input and the responses obtained from the above solution as output for each 

time step which is also in interval form. 

 

5.2 Interval Neural Network Model with Single Input 

and Output Node 
 
 

The interval neural network model is considered with single input and single output node. 

The interval neural network model with single input and single output node is given in 

Figure 5.1. In Figure 5.1, iO
~

, jO
~

 and kO
~

 are taken as input, hidden and output layers. 

The inputs  iiii aaaO  ,
~~
  are the ground acceleration in interval and the outputs 

 kkkk xxxO  ,
~~

  are responses of the structure in interval form. The training and 
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learning algorithm have already been discussed in Sec. 2.7 and 3.2. The weights between 

input and hidden layers are denoted by  jijiji vvv ,~   and the weights between hidden 

and output layers are denoted by  kjkjkj www ,~   which are all in intervals.  jj  ,  are 

the bias weights of the hidden layer and  kk  ,  are the bias weights of the output layer. 

 

                                                              

 

  

 

  

                                                                                                                         

            

 

 

                                                                                                          

                                                                                                                           

Figure 5.1: Interval Neural Network Model with Single Input and Output Node 

 

Next we discuss the fuzzified form of the above neural network. 

 

5.3 Response Analysis for Single Degree of Freedom System 

Subject to Ground Motion for Fuzzy Case 
 

 

The basic concept behind the proposed methodology is to predict the structural response 

(in fuzzified form) of an uncertain shear structural system subject to earthquake forces 

which are also in fuzzified form. Two scenarios namely, without damping and with 

damping have been considered for the analysis. 

 

5.3.1 Without Damping 

 

Here we discuss the procedure for an example problem of a Single Degree of Freedom 

(SDOF) system. Let M̂  be the mass of the generalized one storey structure in fuzzified 

form, K̂ the stiffness of the structure in fuzzified form and X̂  be the displacement relative 

to the ground also in fuzzified form. Then the equation of motion may be written as 

  1
~
O  

  ia
~
  

Output Layer Input Layer Hidden Layer 

Layer 

j
~

 

k
~

 

 2
~
O  

  jO
~

 

  kx
~
  

jiv~  

kjw~  
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                                                 âM̂X̂K̂X
ˆ

M̂                                                             (5.8) 

                                         X̂ = Acceleration in fuzzified form, 

                                         X̂ = Displacement in fuzzified form, 

                                         â = Ground acceleration in fuzzified form. 

Equation (5.8) may be written as, 

                                                       âX̂ω̂X
ˆ 2                                                              (5.9) 

where 2ω̂  is the fuzzified natural frequency parameter of the undamped structure. It may 

be noted that the above equation can be solved by Fuzzy Duhamel integral. Here to obtain 

the solution for equation (5.9), the Duhamel integral are considered for different sets of 

lower, centre and upper form. This is done to avoid complicacy raised while getting the 

above solution. And that is why now we will drop ‘^’ from all notations and will consider 

the case for lower form first and similarly for centre and upper form.  

Hence Equation (5.9) in lower form is written as, 

                                                       aXωX 2                                                               (5.10)   

where 
M

K
2ω  is the natural frequency parameter of the undamped structure in lower 

form. K  is the stiffness parameter and M  is the mass of the storey in lower form. 

                                            X = Acceleration in lower form, 

                                            X = Displacement in lower form, 

                                            a = Ground acceleration in lower form. 

Hence the solution of equation (5.10), Newmark and Rosenblueth [201] in lower form is 

written as 

                                                     

      dττtωsinτa
ω

1
tX

t

0

 

                                     

(5.11)  

From this solution the response of the structure namely acceleration in lower form is 

obtained for no damping. In a similar fashion we can compute for centre and upper form. 

 

5.3.2 With Damping 

 

Let M̂  be the mass of the generalized one storey structure in fuzzified form, K̂  the 

stiffness of the structure in fuzzified form, Ĉ  the damping and X̂ be the displacement 
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relative to the ground all are in fuzzified form. Then the equation of motion may be 

written as 

                                            âM̂X̂K̂X
ˆ

ĈX
ˆ

M̂                                                   (5.12) 

Equation (5.12) may be written in lower form as, 

                                            
aXωXξω2X

2                                                    (5.13) 

where 
M

C
ξω  and 

M

K


2
ω  are the natural frequency parameter of the damped and 

undamped structure in lower form.C  is the damping and X  is the velocity in lower form. 

Here also solution is obtained for different sets in lower, centre and upper form. Hence the 

solution of equation (5.13) in lower form is given as 

                                    

        dτtωsinτtωξexpτa
ω

1
X(t)

t

0

 

                                

(5.14) 

From this solution the response of the structure namely the acceleration in lower form with 

damping is obtained. In a similar manner we can compute for the centre and upper form. 

Hence, the neural network architecture is constructed by taking the fuzzified form of 

ground acceleration as input and the responses obtained from the above solution as output 

for each time step which is also in fuzzified form. 

 

5.4 Transformation of Data from Bipolar to Unipolar for 

Fuzzy Case 
 

The data are in fuzzified form, hence they are first converted to h -level form and then the 

transformation is applied. The data are transferred from bipolar to unipolar i.e., from [-1, 

1] to [0, 1] by the following transformation. Here the input is considered as the ground 

acceleration and output as the response of the structure 

                                                   
   

2

ˆ1
ˆ hk

hk

d
S


                                                   (5.15) 

where  
hkd̂  is the desired output in h-level form. 

 

5.5 Fuzzy Neural Network Model with Single Input and 

Output Node  
 

The fuzzy neural network model is considered with single input and single output node. 

The fuzzy neural network model is given in Figure 5.2. In Figure 5.2, iÔ , jÔ  and kÔ  are 
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taken as input, hidden and output layers. The inputs  iiiii acaaaO  ,,ˆˆ   are the ground 

acceleration in interval and the outputs  kkkkk xcxxxO  ,,ˆˆ   are responses of the 

structure in interval form. The training and learning algorithm have already been discussed 

in Sec. 2.8 and 3.4. The weights between input and hidden layers are denoted by 

 jijijiji vcvvv ,,ˆ   and the weights between hidden and output layers are denoted by 

 kjkjkjkj wcwww ,,ˆ   which are all in intervals.  jjjj c  ,,ˆ   are the bias weights 

of the hidden layer and  kkkk c  ,,ˆ   are the bias weights of the output layer. 

 

 

                                                              

 

  

 

  

                                                                                                                         

            

 

                                                                                                          

                                                                                                                           
 

Figure 5.2: Fuzzy Neural Network Model with Single Input and Single Output Node 

 

5.6 Response Analysis for Multi Degree of Freedom System 

Subject to Ground Motion for Interval Case 
 

 

The basic concept behind the proposed methodology is to predict the interval structural 

response of multi degree of freedom system viz. two, six and ten storey shear buildings 

subject to various earthquake accelerations by training the same for one particular 

earthquake data. When a shear building with n storey is subjected to base excitation, then 

the governing equation of motion in interval form may be written as 

 

                     
         txMtxKtxCtxM g

~
]

~
-[=}~]{

~
[ +}

~
]{

~
[+}

~
]{

~
[  

                                 
(5.16) 
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kjŵ  



 

 

 

114 

 

where  M
~  MM , is nn  interval mass matrix,    KKK ,

~
 nnis

 interval 

stiffness matrix of the structure in interval form and    CCC ,
~
 represents nn  interval 

damping  matrix,   is the influence co-efficient vector. Here  }~{ tx  is the displacement 

relative to the ground,  }
~

{ tx  is the response acceleration,  }
~

{ tx  is the response velocity 

and  txg

~


 
is the earthquake ground acceleration all are in interval form. The global mass, 

stiffness and damping matrices in interval form can be written as  M
~

,  K
~

 and  C
~

 as 

below: 
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Equation (5.16) is generally a set of n-coupled equations. The classical method of solving 

these equations in the absence of damping is to find the normal modes of oscillations of 

the homogeneous equation and to determine the normal co-ordinates.

 

                                                   0=}~]{
~

[ +}
~

]{
~

[ txKtxM 
                                              (5.17) 
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Let us take normal co-ordinates in lower form as         tyAtx  . We have 

considered the lower form to avoid complicacy arised due to the interval computation. 

Hence we will remove ‘~’ from all notations and denote the lower and upper form 

separately.  

Substituting         tyAtx   and premultiplying by  TA in Equation (5.16) we get 

                                txMAtyAKAtyACAtyAMA g
TTTT  

  
(5.18) 

 

The above equation reduces to 

                     txMAtyKtyCtyM g
T

ddm  
                              

(5.19) 

 

where        m
T

MAMA 
 
is the generalized mass matrix which is diagonal 

     
       d

T
KAKA 

 
is the generalized stiffness matrix which is diagonal 

     
      d

T
CACA 

  
is the damping matrix which is in general not diagonal. 

  

If  C  is proportional to    KM or then     ACA
T

 becomes diagonal. Then we can say 

that the system has proportional damping and Equation (5.19) becomes completely 

uncoupled. The above differential equations can be solved as single degree of freedom and 

the solution can be got easily. After getting   ty
 
from Equation (5.19), the displacement 

 tx i  of any floor can be obtained by using the equation,         tyAtx  .  

For a linear system with proportional damping, Equation (5.16) can be solved by modal 

analysis technique. But for earthquake response analysis, the modal analysis technique 

becomes more efficient. Thus, Equation (5.16) can be reduced to n-modal equations of the 

form (Chakraverty, [86] and Chakraverty et al. [89]) 

                  
       txtxωtxωξtx grrrrrrr  

2~2
 
r=1,2,…,n              (5.20)  

where n (  N) is the number of significant modes, 
r

ξ  is the damping ratio and the modal 

coordinate  tx r  is related to the displacement of the i-th mass as follows: 

                                 
r

n

r
iri xv 




1                                                                     
(5.21) 

in which ir
 
is the i-th component of the r-th mode-shape vector and r is the modal 

participation factor. Equation (5.20) represents the equation of motion of n SDOF system 
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and the response is obtained from Duhamel integral. The Duhamel integral in lower form 

is written as 

            

         dττtωτtωξτx
ω

tx rrr

t

g
Dr

r
r 


  sinexp

0



                          

(5.22) 

Here 2
1

rrDr   , where Dr , rω
 

and rξ  are damped frequency, free 

vibration frequency and damping ratio respectively. The time history response of the i-th 

mass is then determined from Equation (5.20) as 

                             
       txtxtv

iii 2211
  

From this the floor responses of the multi-storey structures viz. displacement is obtained in 

lower form. In similar manner we can compute for upper form as well. The interval neural 

network architecture is constructed, taking ground acceleration in interval form as input 

and the storey response as output in interval form, obtained from the above solution for 

each time step. Therefore, the whole network consists of one input layer, one hidden layer 

with varying nodes and one output layer as shown in Figure 5.3. 

 

5.7 Transformation of Data from [-1, 1] to [0, 1] 
 

Here input is ground acceleration and output is the structural response which may be 

positive and/or negative. As said above first the normalization is done for both input and 

output data. Then these normalized data are transformed from [-1, 1] to [0, 1] by means of 

the following transformation  

                                          2

~
1~ k

k
d

S



                                                                         

(5.23) 

where kd
~
  is the normalized desired output in interval form. 

 

5.8 Learning Algorithm of Interval Neural Network Using 

Unipolar Activation Function 
 

The architecture of multi-layer interval neural network model is shown in Figure 5.3. The 

training and learning algorithm have already been discussed in Sec. 2.7. iO
~

, jO
~

 and kO
~

 

are taken as input, hidden and output layers. In Figure 5.3, the inputs  iiii aaaO  ,
~~
  are 

the ground acceleration and the outputs  kkkk xxxO ,~~
  are responses of the structure 

both in interval form. kd
~

 is the desired output. The weights between input and hidden 

layers are denoted by  jijiji vvv ,~   and the weights between hidden and output layers 
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are denoted by  kjkjkj www ,~   which are all in intervals.  jj  ,  are the bias weights 

of the hidden layer and  kk  ,  are the bias weights of the output layer. 

 

                                                             

 

  

 

  

                                                                                                                              

            

 

                                                                                                                           

              

                                                                                                              

 

 

Figure 5.3: Multi-Layer Interval Neural Network Model 

 

5.9 Transformation of Data from [0, 1] to [-1, 1] by Inverse 

Transformation 
 

Once Training is done the data are again transferred back to its bipolar form i.e., [-1, 1] by 

using inverse transformation. The product of inverse transformation and the normalization 

factor gives the INN results in its bipolar form. After back propagation training is 

completed the final INN output is calculated as 

 

                                                lRO kk
~~~
                                                                     (5.24) 

 where 1
~

2
~

 kk SR  

kO
~

 are the final INN outputs, kR
~

 is the inverse transformation and l
~

 is the normalizing 

factor in interval form. 
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5.10 Numerical Results and Discussion 

5.10.1 Single Degree of Freedom System for Interval Case 
 

For present study two Indian earthquakes viz. the Chamoli earthquake at Barkot in NE 

(north east) direction and the Uttarkashi earthquake at Barkot in NE (north-east) direction 

have been considered for training and testing for different cases. Different cases are 

discussed below: 

 

Case (i) Without damping, Ground acceleration as well as response data in interval form 

with crisp frequency. 

Case (ii) Without damping, Ground acceleration as well as response data in interval form 

with interval frequency. 

Case (iii) With damping, Ground acceleration as well as response data in interval form 

with crisp frequency and interval damping. 

Case (iv) With damping, Ground acceleration as well as response data in interval form 

with interval frequency and interval damping. 

Case (v) Testing for different earthquake data with / without damping. 

 

It is worth mentioning that the earthquake acceleration data are actually both positive and 

negative. But the present INN cannot handle the data with negative sign due to the 

complexity in interval computation and also in the INN model. As such we have taken all 

the earthquake data as absolute (positive) value and then those have been trained. 

Accordingly, all the plots are presented in the positive y-axis. This is also due to the fact 

we may concentrate on the amplitude of the acceleration at any instant of time. 

 

Example for case (i): 

For case (i), initially the system without damping is studied and for that the system is 

subjected to Chamoli earthquake with maximum ground acceleration in interval form as 

[19.088, 20.088] cm/sec/sec at Barkot in NE (north-east) direction was used to compute 

the response for single storey structure using Eq. (5.4). The obtained response of the 

structure and the ground acceleration in interval form are trained first for the assumed 

frequency parameters in crisp form as ω=0.5 with time range 0 to 14.96 secs. (749 data 

points) for the mentioned earthquake and are shown in Figures 5.4(a) and 5.4(b). Figure 

5.4(a) shows the plot for lower values and Figure 5.4(b) depicts the upper values. Similar 

plots with ω=0.02 are shown in Figures 5.5(a) and 5.5(b). Simulations have been done for 
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different hidden layer nodes and it was seen that the response result is almost same and 

good for 15 to 18 nodes in the hidden layer. However, 18 hidden layer nodes are used here 

to generate the results for 749 data points. 

 

 

Figure 5.4(a): Comparison between the desired and INN seismic response for lower                                

values (without damping) for Chamoli earthquake at Barkot in NE 

direction with ω=0.5 

 

 

Figure 5.4(b): Comparison between the desired and INN seismic sesponse for upper 

values (without damping) for Chamoli earthquake at Barkot in NE 

direction with ω=0.5 
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Figure 5.5(a): Comparison between the desired and INN seismic response for lower values 

(without damping) for Chamoli earthquake at Barkot in NE direction with 

ω=0.02 
                                      

 
 

Figure 5.5(b): Comparison between the desired and INN seismic response for upper values 

(without damping) for Chamoli Earthquake at Barkot in NE direction with 

ω=0.02 
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architecture is trained within the time range 0 to 14.96 secs. (749 data points) but for two 

sets of frequency parameters taken in interval form as  0.6 0.4,ω   and  0.03 0.01,ω  . 

Training has been done for different hidden layer nodes. Again 18 hidden layer nodes are 

used to generate the results for 749 data points. The results are plotted in Figures 5.6(a), 

5.6(b) and 5.7(a), 5.7(b). 

 

Figure 5.6(a): Comparison between the desired and INN seismic response for lower values 

(without damping) for Chamoli earthquake at Barkot in NE direction with

ω= [0.4, 0.6]                    

 

Figure 5.6(b): Comparison between the desired and INN seismic response for upper values 

(without damping) for Chamoli earthquake at Barkot in NE directions with 

ω= [0.4, 0.6] 
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Figure 5.7(a): Comparison between the desired and INN seismic response for lower values 

(without damping) for Chamoli earthquake at Barkot in NE direction with 

ω= [0.01, 0.03] 

 
 

Figure 5.7(b): Comparison between the desired and INN seismic response for upper values 

(without damping) for Chamoli earthquake at Barkot in NE directions with

ω= [0.01, 0.03] 
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the said IANN model for an example structural system with frequency parameter in crisp 

form as ω= 0.68981 and damping as [1.48033, 1.68033].  Training was done for the total 

time range 0 to 14.96 secs. (749 data points). After training, ground acceleration and 

response data for Uttarkashi earthquake for various nodes in hidden layer it was confirmed 

that 18 nodes are again sufficient for the prediction. So, the weights corresponding to 18 

hidden nodes are stored and they are used to predict responses for various intensity 

earthquakes. Figures 5.8(a) and 5.8(b) show the response comparison between the desired 

and INN data. 

 
      

Figure 5.8(a): Comparison between the desired and INN seismic response for lower values 

for Uttarkashi earthquake at Barkot in NE direction with ω=0.68981 and 

damping [1.48033, 1.68033]   

                                          

 

Figure 5.8(b): Comparison between the desired and INN seismic response for upper values 

for Uttarkashi earthquake at Barkot in NE direction with ω=0.68981 and 

damping [1.48033, 1.68033]  
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Example for case (iv): 

For case (iv) the system is again considered with damping. Ground acceleration in interval 

form is used to calculate the required response of the structure in interval form with 

frequency parameter in interval form as 0.78981] [0.58981,ω  and damping as [1.48033, 

1.68033]. The data are trained with different hidden nodes in the hidden layer and it was 

found that 16 hidden nodes are sufficient to get an accuracy of 0.001. Comparison 

between the desired and INN are shown in Figures 5.9(a) and 5.9(b). After training the 

ground acceleration and response data in interval form for Uttarkashi earthquake at Barkot 

(NE) for different hidden nodes in hidden layer, the weights are stored and they are used to 

predict responses for various intensity earthquakes.                                    

 

Figure 5.9(a): Comparison between the desired and INN seismic response for lower values 

for Uttarkashi earthquake at Barkot in NE direction with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033]   

 
                  

Figure 5.9(b): Comparison between the desired and INN seismic response for upper values 

for Uttarkashi earthquake at Barkot in NE directions with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033]   
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Example for case (v) (Testing case with damping): 

Finally in case (v) the training is extended with various intensities for time range 0 to 9.98 

secs. (500 data points) and tested with different hidden layer nodes. It was found that the 

response result is almost same and good for 15 to 20 nodes in the hidden layer. But here 

16 hidden layer nodes are used to generate the results for 500 data points without damping 

with frequency parameter in interval form. Figures 5.10(a) and 5.10(b) show response 

comparison between INN and desired for the 80% of Uttarkashi earthquake at Barkot (NE) 

for  0.6 0.4,ω  using the stored converged weights of Chamoli earthquake directly. 

Similarly, the response comparison for 120% Uttarkashi earthquake at Barkot (NE) for 

 0.03 0.01,ω   using the converged weights of Chamoli earthquake are shown in Figures 

5.11(a) and 5.11(b). 

 

Figure 5.10(a): Comparison between the desired and INN of 80% seismic response for 

lower values (without damping) for Uttarkashi earthquake at Barkot (NE) 

with ω= [0.4, 0.6] 

 
 

Figure 5.10(b): Comparison between the desired and INN of 80% seismic response for 

upper values (without damping) for Uttarkashi earthquake at Barkot (NE) 

withω= [0.4, 0.6] 
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Figure 5.11(a): Comparison between the desired and INN of 120% seismic response for 

lower values (without damping) for Uttarkashi earthquake at Barkot (NE) 

with ω= [0.01, 0.03] 

                        

 

Figure 5.11(b): Comparison between the desired and INN of 120% seismic response for 

upper values (without damping) for Uttarkashi earthquake at Barkot (NE) 

withω= [0.01, 0.03]  
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comparison between the desired and ANN response data for 80% of Chamoli earthquake 

acceleration at Barkot (NE) with 0.78981] [0.58981,ω   and damping = [1.48033, 

1.68033] using the converged weights of Uttarkashi earthquake are shown in Figures 

5.12(a) and 5.12(b). Similarly, for 120% of Chamoli earthquake acceleration at Barkot 

(NE) with 0.78981] [0.58981,ω  and damping = [1.48033, 1.68033] and the response 

comparison between neural and desired are plotted in Figures 5.13(a) and 5.13(b). 

 

 
                  

Figure 5.12(a): Comparison between the desired and INN of 80% seismic response for 

lower values for Chamoli earthquake at Barkot (NE) with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033] 

 

Figure 5.12(b): Comparison between the desired and INN of 80% seismic response for 

upper values for Chamoli earthquake at Barkot (NE) with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033] 
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Figure 5.13(a): Comparison between the desired and INN of 120% seismic response for 

lower values for Chamoli earthquake at Barkot (NE) with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033] 

 

Figure 5.13(b): Comparison between the desired and INN of 120% seismic response for 

upper values for Chamoli earthquake at Barkot (NE) with ω= [0.58981, 

0.78981] and damping [1.48033, 1.68033]                

 

Comparison between desired and INN peak acceleration values (testing) with various 

intensities of Uttarkashi (without damping) and Chamoli earthquake acceleration at Barkot 

(NE) (with damping) has been presented in Table 5.1.  

 

Table 5.1: Comparison between the desired and INN Peak Acceleration values (Testing 

Values) 

   

Case Intensities Desired INN 

 

Lower Upper Lower Upper 

Without Damping (Uttarkashi at Barkot NE) 80% 15.2704 16.0704 14.7954 15.6091 

120% 22.9056 24.1056 22.3373 23.4528 

With Damping (Chamoli at Barkot NE) 80% 13.108 13.908 12.7279 13.4997 

120% 19.662 20.862 19.0955 20.2757 
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5.10.2 Single Degree of Freedom System for Fuzzy Case 

 

For present scenario two Indian earthquakes, the Chamoli Earthquake at Barkot in NE 

(north east) direction and the Uttarkashi earthquake at Barkot in NE (north-east) direction 

have been considered for training and testing for different cases. The various cases 

considered are shown below: 

 

Case (i): Without damping: Ground acceleration as well as response data in fuzzified form 

with crisp frequency. 

Case (ii): Same as (i), but with fuzzy frequency 

Case (iii): With damping: Ground acceleration as well as response data in fuzzified form 

with crisp frequency and fuzzy damping. 

Case (iv): Same as (iii), but with fuzzy frequency 

Case (v): Testing for different earthquake data with / without damping. 

 

The earthquake acceleration data are actually both positive and negative. As mentioned in 

the Introduction that the transformation Eq. (5.15) first converts the data from bipolar to 

unipolar i.e., from range [-1, 1] to range [0, 1], then the data are transferred back to its 

bipolar form. The data in fuzzified form are converted to h-level form first and then the 

transformation is applied.  

 

Example for case (i): 

For case (i), initially the system without damping is studied and for that the system is 

subjected to Chamoli Earthquake with maximum ground acceleration in fuzzified form as 

[19.088, 19.588, 20.088] cm/sec
2
at Barkot in NE (north-east) direction. The response of 

the structure is obtained by solving Eq. (5.11). The ground acceleration in fuzzified form 

is converted to h-level form and is used for training. The mass in fuzzified is taken as 

 1,1,1ˆ M  for all cases. The stiffness parameter is not used here directly as we are 

considering the frequency parameter in the model. Frequency parameter in crisp form is 

taken as ω=0.02 with time range 0 to 14.96 sec. (749 data points) for the mentioned 

earthquake. Comparisons between desired and FNN are shown in Figures 5.14(a)-5.14(c). 

Figure 5.14(a) shows the plot for lower values, Figure 5.14(b) shows the plot for centre 

values and Figure 5.14(c) depicts the upper values. Simulations have been done for 

different hidden layer nodes and it was seen that the response result is almost same and 
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good for 15 to 18 nodes in the hidden layer. However, 18 hidden layer nodes are used here 

to generate the results for 749 data points. 

 

 
 

Figure 5.14(a): Comparison between the desired and FNN acceleration for lower values 

(without damping) 

 

 

Figure 5.14(b): Comparison between the desired and FNN acceleration for centre values 

(without damping) 

 

Figure 5.14(c): Comparison between the desired and FNN acceleration for upper values 

(without damping) 
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Example for case (ii): 

In case (ii), the system is considered without damping with the same earthquake. Here 

ground acceleration is taken as input and structural displacement as output. The neural 

network architecture is trained within the time range 0 to 14.96 sec. (749 data points) 

taking frequency parameter in fuzzified form as  6.0,5.0,4.0ˆ  . Training has been done 

for different hidden layer nodes. Again 18 hidden layer nodes are used to generate the 

results for 749 data points. The displacement time plots are plotted in Figures 5.15(a)-

5.15(c). 

 

 

Figure 5.15(a): Comparison between the desired and FNN displacement for lower values 

(without damping) 

 

Figure 5.15(b): Comparison between the desired and FNN displacement for centre values 

(without damping) 
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Figure 5.15(c): Comparison between the desired and FNN displacement for upper values 

(without damping) 

 

Example for case (iii): 

The system with damping is taken in case (iii). The ground acceleration of Uttarkashi 

earthquake at Barkot (NE) and the displacement in h-level form are used as training 

patterns. The training patterns are trained by the FNN model with frequency parameter in 

crisp form as ω= 0.68981 and damping Ĉ [1.48033, 1.58033, 1.68033]. Training was 

done for a total time range of 0 to 14.96 sec (749 data points). After training ground 

acceleration and response data for Uttarkashi earthquake for various nodes in hidden layer 

it was confirmed that 18 nodes are again sufficient for the prediction. So, the weights 

corresponding to 18 hidden nodes are stored and they are used to predict responses for 

various intensity earthquakes. Figures 5.17(a)-5.17(c) show the displacement time plots 

between the desired and FNN.  

 

 

Figure 5.16(a): Comparison between the desired and FNN displacement for lower values 

(with damping) 
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Figure 5.16(b): Comparison between the desired and FNN displacement for centre values 

(with damping) 

 

Figure 5.16(c): Comparison between the desired and FNN displacement for upper values 

(with damping) 

 

Example for case (iv): 

For case (iv), the system is again considered with damping. The response of the structure 

in fuzzified form is computed using Eq. (5.14). Then the ground acceleration and 

structural response in h-level form is used for training. Here frequency parameter in 

fuzzified form is taken as  78981.0,68981.0,58981.0ˆ    and damping Ĉ [1.48033, 

1.58033, 1.68033]. The data are trained with different hidden nodes in the hidden layer 

and it was found that 16 hidden nodes are sufficient to get an accuracy of 0.001. 

Comparison between the desired and FNN is shown in Figures 5.17(a)-5.17(c). After 

training the ground acceleration and response data for Uttarkashi earthquake at Barkot 
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(NE) for different hidden nodes in hidden layer, the weights are stored and they are used to 

predict responses for various intensity earthquakes. 

 

 

Figure 5.17(a): Comparison between the desired and FNN acceleration for lower values 

(with damping) 

 

Figure 5.17(b): Comparison between the desired and FNN acceleration for centre values 

(with damping) 

 

 
 

Figure 5.17(c): Comparison between the desired and FNN acceleration for upper values 

(with damping) 
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Example for case (v) (Testing case without damping): 

Finally in case (v) the training is extended with damping and without damping for various 

intensities with time range 0 to 9.98 sec. (500 data points) and are tested with different 

hidden nodes in hidden layer. It was found that the response result is almost the same and 

good for 15 to 20 nodes in the hidden layer. But here 16 hidden layer nodes are used to 

generate the results for 500 data points without damping with frequency parameter in 

fuzzified form. Figures 5.18(a)-5.18(c) show displacement time plot comparison between 

FNN and desired for 80% of Uttarkashi earthquake at Barkot (NE) for 

 03.0,02.0,01.0ˆ   using the stored converged weights of Chamoli earthquake directly.  

 

 

Figure 5.18(a): Comparison between the desired and FNN (Testing) displacement of 80% 

for lower values (without damping) 

 

 

Figure 5.18(b): Comparison between the desired and FNN (Testing) displacement of 80% 

for centre values (without damping) 
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Figure 5.18(c): Comparison between the Desired and FNN (Testing) displacement of 80% 

for upper values (without damping) 

 

Example for case (v) (Testing case with damping): 

Similarly the training with damping for time range 0 to 9.98 sec (500 data points) is done 

and is tested with different hidden nodes. It was found that the response result is almost 

the same and good for 16 hidden layer nodes. The comparison between the desired and 

FNN response data for 120% of Chamoli earthquake acceleration at Barkot (NE) with 

 78981.0,68981.0,58981.0ˆ   and damping Ĉ [1.48033, 1.58033, 1.68033] using the 

converged weights of Uttarkashi earthquake are shown in Figures 5.19(a)-5.19(c). 

 

 

Figure 5.19(a): Comparison between the desired and FNN (Testing) acceleration of 120% 

for lower values (with damping) 
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Figure 5.19(b): Comparison between the desired and FNN (Testing) acceleration of 120% 

for centre values (with damping) 

 

Figure 5.19(c): Comparison between the desired and FNN (Testing) acceleration of 120% 

for upper values (with damping) 

 

A comparison between desired and FNN peak acceleration values (testing) with various 

intensities of Uttarkashi (without damping) and Chamoli earthquake acceleration at Barkot 

(NE) (with damping) is presented in Table 5.2. The error % between desired and FNN 

Peak values of predicted data is given in Table 5.3. 
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Table 5.2: Comparison between the Desired and FNN Peak Acceleration values (Testing 

Values) 

  

Case Intensities 
Desired 

 

FNN 

 

Lower Centre Upper Lower Centre Upper 

Without Damping 

(Uttarkashi at Barkot NE) 

80% 15.27 15.67 16.07 14.95 15.34 15.71 

120% 22.90 23.50 24.10 22.46 23.08 23.64 

With Damping 

(Chamoli at Barkot NE) 

80% 13.10 13.50 13.90 12.72 13.12 13.51 

120% 19.66 20.26 20.86 19.42 20.81 20.21 

 

Table 5.3: Error % between Desired and FNN (Peak Values) 

 

Case Response 
Error % 

Lower Centre Upper 

Without Damping (Chamoli at Barkot NE) 

Acceleration 

ω =0.02 
2 2 2 

Displacement 

 6.0,5.0,4.0ˆ   
2 2 2 

With Damping 

(Uttarkashi at Barkot NE) 

Displacement 

ω =0.68981 
0.08 0. 06 0. 04 

Acceleration 

 6789.0,689.0,589.0ˆ   
0.8 0.00 0.00 

 

 

5.10.3 Multi Degree of Freedom System for Interval Case 

 

In the present investigation, examples of two, six and ten storey structures have been 

considered. The Chamoli earthquake data at Barkot in NE (north east) direction has been 

considered for training and different intensities of Uttarkashi earthquakes data at Barkot in 

NE direction are used for testing different storeys. The original Chamoli earthquake is 

plotted in Figure 5.20. The peak acceleration value of this Chamoli earthquake is 19.58 

cm/sec
2
. As discussed earlier that the earthquake acceleration data have values both in 

positive and negative. A transformation has been used here which converts all the bipolar 

data to unipolar form. After the data are converted within the range [0, 1] the INN 

algorithm is used and once the training is done again the data are transferred back to its 

bipolar form by means of the inverse transformation. Interval neural network training is 

done till a desired accuracy is achieved. The methodology has been discussed by giving 

the results for following three examples. 
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Figure 5.20: Chamoli earthquake, Barkot, March 29, 1999, Peak acceleration: 19.58 

cm/sec
2
 

 

Example 1. Two storey shear buildings: 
 

In the present investigation, an example of two storey structure (2DOF system) with 

natural frequency parameters [23.08, 39.58] and [60.22, 103.30] in interval form has been 

considered. The damping ratio in interval form is assumed as [8%, 10%] critical. Here, the 

Chamoli earthquake at Barkot (NE direction) has been considered for training with peak 

values as [19.08, 20.08]. The responses of the first and second storey are obtained 

numerically by solving the Duhamel integral, considering the ground acceleration of 

Chamoli earthquake at Barkot (NE).Training is done by INN using the ground acceleration 

and responses of the two storeys in interval form. This training was done for a total time 

range of 0-10 secs (500 data points, earthquake period) till desired accuracy reached as 

0.001. After training the converged weights are stored for testing. The desired and INN 

results of first storey are shown in Figures 5.21(a)-5.21(b). Figures 5.22(a)-5.22(b) show 

the comparison between the neural and desired of second storey. The training is also done 

for time range of 0-4 secs (200 data) and for time range of 0-14 secs (700 data). The plot 

for 200 data points for first storey is shown in Figures 5.23(a)-5.23(b) and for second 

storey in Figures 5.24(a)-5.24(b). Similarly the plots with 700 data points are shown in 

Figures 5.25(a)-5.25(b) for first storey and in Figures 5.26(a)-5.26(b) for second storey. 
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Figure 5.21(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for first storey (500data) 

 

 

 
 

Figure 5.21(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for first storey (500 data) 

 
 

Figure 5.22(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for second storey (500 data) 
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Figure 5.22(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for second storey (500 data) 

 
 

Figure 5.23(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for first storey (200 data) 

 

 
Figure 5.23(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for first storey (200 data) 
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Figure 5.24(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for second storey (200 data) 

 
 

Figure 5.24(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for second storey (200 data) 

 
 

Figure 5.25(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for first storey (700 data) 
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Figure 5.25(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for first storey (700 data) 

 
 

Figure 5.26(a): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for second storey (700 data) 

 

 
 

Figure 5.26(b): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for second storey (700 data) 
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Example 2. Six storey shear buildings: 
 

Here, the damping ratio in interval form is assumed as [4%, 6%] critical. The Chamoli 

earthquake at Barkot (NE) direction has been considered here for training. The training is 

done in a similar way as done in example 1. This training was done for a total time range 

of 0-10 sec (500 points, earthquake period) with a desired accuracy of 0.001. After 

training the converged weights are stored. The neural and desired results obtained after 

training for sixth storey of the building are shown in Figures 5.27(a)-5.27(h). Figure 

5.27(a) shows the data of lower case in [-1, 1] range, 5.27(b) shows conversion of the 

same data from [-1, 1] to [0, 1] using the transformation and 5.27(c) shows the conversion 

of data from [0, 1] to [-1, 1] using the inverse transformation. Finally the result 

comparison between the desired and INN is shown in Figure 5.27(d). For upper case, the 

results are plotted in Figures 5.27(e)-5.27(h). 

 

 

 
Figure 5.27(a): Lower values response of Chamoli earthquake at Barkot (NE) within  

                         [-1, 1] range 

 

 
Figure 5.27(b): Conversion of lower values response of Chamoli earthquake at Barkot 

(NE) within [0, 1] range by transformation 
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Figure 5.27(c): Conversion of lower values response of Chamoli earthquake at Barkot 

(NE) within [-1, 1] range by inverse transformation 

 

 
Figure 5.27(d): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for sixth storey  

 

 
Figure 5.27(e): Upper values response of Chamoli earthquake at Barkot (NE) within  

                         [-1, 1] range 
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Figure 5.27(f): Conversion of upper values response of Chamoli earthquake at Barkot 

(NE) within [0, 1] range by transformation 

 
Figure 5.27(g): Conversion of upper values response of Chamoli earthquake at Barkot 

(NE) within [-1, 1] range by inverse transformation 

 

 
Figure 5.27(h): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for sixth storey 
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Example 3. Ten storey shear buildings: 
 

The damping ratio in interval form is assumed here as [8%, 10%] critical for all natural 

modes for the entire storey. In the similar manner using same earthquake data as in 

examples 1 and 2, the training has been done for ten storey shear building and the 

converged weights are stored for testing. The neural and desired results obtained after 

training for tenth-storey of the structure are shown in Figures 5.28(a)-5.28(h). Figure 

5.28(a) shows the data of lower case in [-1, 1] range, 5.28(b) shows conversion of the 

same data from [-1, 1] to [0, 1] using the transformation, 5.28(c) shows the conversion of 

data from [0, 1] to [-1, 1] using the inverse transformation. Finally the result comparison 

between the desired and INN is shown in Figure 5.28(d). For upper case, the figures are 

plotted in Figures 5.28(e)-5.28(h). 

 

 
Figure 5.28(a): Lower values response of Chamoli earthquake at Barkot (NE) within  

                         [-1, 1] range 

 
Figure 5.28(b): Conversion of lower values response of Chamoli earthquake at Barkot 

(NE) within [0, 1] range by transformation 
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Figure 5.28(c): Conversion of lower values response of Chamoli earthquake at Barkot 

(NE) within [-1, 1] range by inverse transformation 

 
Figure 5.28(d): Comparison between the desired and INN response for lower values of 

Chamoli earthquake at Barkot (NE) for tenth storey  

 

 
Figure 5.28(e): Upper values response of Chamoli earthquake at Barkot (NE) within  

                         [-1, 1] range 
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Figure 5.28(f): Conversion of upper values response of Chamoli earthquake at Barkot 

(NE) within [0, 1] range by transformation 

 
Figure 5.28(g): Conversion of upper values response of Chamoli earthquake at Barkot 

(NE) within [-1, 1] range by inverse transformation 

 

 
Figure 5.28(h): Comparison between the desired and INN response for upper values of 

Chamoli earthquake at Barkot (NE) for tenth storey 
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Example for testing case: 
 

Next, the stored converged weights are used to predict storey responses with different 

intensity of earthquakes. The stored weights of problem 2 are used to predict fourth storey 

responses of the sixth storey for 80% and 120% of Uttarkashi earthquake at Barkot (NE). 

The comparison of the neural and desired responses for 80% is shown in Figures 5.29(a)-

5.29(b) and for 120% is plotted in Figures 5.30(a)-5.30(b). Similarly, the ninth-storey 

responses of tenth storey for 80% and 120% of Uttarkashi earthquake at Barkot (NE) are 

found using the converged weights of problem 3. The neural and desired result for 80% is 

shown in Figures 5.31(a)-5.31(b) and for 120% is plotted in Figures 5.32(a)-5.32(b). The 

error % between desired and INN peak acceleration values (testing) with various 

intensities of Uttarkashi earthquake acceleration at Barkot (NE) have been presented in 

Table 5.4. 

 

 
Figure 5.29(a): Lower values response comparison between the desired and INN for 80% 

of Uttarkashi earthquake at Barkot (NE) of fourth storey 

 

 
Figure 5.29(b): Upper values response comparison between the desired and INN for 80% 

of Uttarkashi earthquake at Barkot (NE) of fourth storey 
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Figure 5.30(a): Lower values response comparison between the desired and INN for 120% 

of Uttarkashi earthquake at Barkot (NE) of fourth storey 

 
Figure 5.30(b): Upper values response comparison between the desired and INN for 120% 

of Uttarkashi earthquake at Barkot (NE) of fourth storey 

 
Figure 5.31(a): Lower values response comparison between the desired and INN for 80% 

of Uttarkashi earthquake at Barkot (NE) of ninth storey 
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Figure 5.31(b): Upper values response comparison between the desired and INN for 80% 

of Uttarkashi earthquake at Barkot (NE) of ninth storey 

 
Figure 5.32(a): Lower values response comparison between the desired and INN for 120% 

of Uttarkashi earthquake at Barkot (NE) of ninth storey 

 
 

Figure 5.32(b): Upper values response comparison between the desired and INN for 120% 

of Uttarkashi earthquake at Barkot (NE) of ninth storey 
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The investigation done demonstrates that the developed model can handle the data in 

interval form. It is easier to use because training by one earthquake data, can very well 

give an idea of the response prediction subject to other earthquakes. Moreover, the model 

gives a faster prediction of the responses once it is trained by known earthquake data. 

 

Table 5.4: Comparison between the Desired and INN Peak Acceleration values  

                  (Testing Values) 

 

5.11 Conclusion 

A method has been proposed here by creating a trained black box in terms of INN and 

FNN containing the characteristics of the multi-storey structure and of the earthquake 

motion. It is worth mentioning that the uncertain form of data in terms of interval and 

fuzzy shows the actual essence of the practical problem undertaken. After training of the 

INN and FNN model, it is shown that the black box can very well predict the dynamic 

response in interval form for other earthquakes that are not used in the training. The 

difficulty faced in the present problem is when the data are in bipolar form. The interval 

and fuzzy model cannot handle the negative data easily due to it computational 

complexities. So as to avoid these complexities first the fuzzified data are converted to h-

level form, then a transformation is used which changes these bipolar data to unipolar 

form. One may note that while doing the training, the bipolar data in [-1, 1] are converted 

first to unipolar form [0, 1] by means of a transformation and once the training is done 

again the unipolar data are converted back to its bipolar form by using the inverse 

transformation. The trained INN and FNN architecture is then used to simulate and test the 

structural response of different floors for various intensity earthquake data. As mentioned 

in the previous sections that although the simulation is done with numerically generated 

response data for particular earthquake (experimental) data but the idea may also be used 

for actual experimental data of the building response. So, by using the input and output as 

Storey Intensities 

Lower Peak value (cm/sec2) 
Upper Peak value (cm/sec2) 

 

Desired INN 
 

Error % 
Desired INN 

 

Error % 

4th storey (Uttarkashi at Barkot NE) 
80% 0.0029843 0.0029884 -0.001 0.0031291 0.0031282 0.000 

120% 0.0044764 0.0044761 0.000 0.0046937 0.0046924 0.000 

9th storey (Uttarkashi at Barkot NE) 
80% 0.0030329 0.0030333 -0.001 0.0031929 0.0031974 -0.000 

120% 0.0045493 0.0045449 0.000 0.0047894 0.0047811 0.001 
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the ground motion and the floor response, one can train the model. Accordingly then the 

storey response may be predicted for future earthquakes using the trained model. In this 

way the safety of the structural systems may be predicted in term of interval and fuzzy 

bound in case of future earthquakes. 
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Chapter 6 

System Identification by Cluster of  

Interval and Fuzzy Neural Network 
 

 

In this Chapter interval and fuzzy neural network based modelling for the identification of 

structural parameters of uncertain multi-storey shear buildings has been proposed. Here 

the method is developed to identify uncertain structural mass, stiffness and damping 

matrices from the dynamic responses of the structure without any optimization processes 

that are generally used to solve inverse vibration problems. Uncertainty has been taken in 

term of interval and fuzzy numbers. The governing equations of motion are first solved by 

the classical method to get responses of the consecutive stories. Further the governing 

equations of motion are modified based on relative responses of consecutive stories in 

such a way that the new set of equations can be implemented in a cluster of Interval and 

Fuzzy Neural Networks. As such the model starts solving the n
th

 floor by INN and FNN 

modelling to estimate the structural parameters. Subsequently series of INN and FNN 

models are used to estimate the parameters for (n-1)
th

 storey to the first storey. One may 

note that single layer interval and fuzzy neural networks have been used for training for 

each cluster of the INN and FNN such that the converged weights give the uncertain 

structural parameters. The initial weights in the INN and FNN architecture are taken as the 

design parameters in uncertain (interval and fuzzy) form. In order to validate the present 

model various example problems of different multi-storey shear structures have been 

considered. Related results are incorporated in term of tables and graphs. Comparisons 

between theoretical and identified results are carried out and are found to be in good 

agreement. 

 

6.1 System Identification of Structural Parameters in 

Interval Form  
 

We have consider a shear building with n  storey structural system governed by the 

following set of linear differential equations in interval form as 

                                          tttt FYKYCYM }
~

{=}
~
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[ +}
~
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[                                          (6.1)                                                                             



 

 

 

156 

 

where tY}
~

{ 
 
and tY}

~
{ 

 
are the known acceleration and velocity vectors in interval form     

respectively. Moreover, M
~  MM ,  is nn   interval mass matrix of the structure 

and is given by 

 

 
 

 
 

,

,00

0,0

00,0

00,

~

11

22

1 1





























nn

nn

mm

mm

mm

mm

M











 

 C
~   nnCC represents,

 damping matrix of the structure in interval form and is 

written as
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and     nnKKK  is,
~

 stiffness matrix of the structure in interval form which may be  

obtained as 
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The solution of free vibration equation i.e. for Eq. (6.1) with uncertain (interval) mass and 

stiffness gives the corresponding interval eigenvalues and eigenvectors Chakraverty [200]. 

The eigen values and eigen vectors are denoted by i
~

 and   
ii

AAA ,
~

 , ni ,...,1  

respectively where  ii 
~~ 2   are the system’s interval natural frequency. The above free 

vibration equation will be an interval eigenvalue problem. The interval eigenvalue and 

vector are obtained by considering different sets of lower and upper stiffness and mass 

values. Although there exist different methods to handle interval eigenvalue problems but 
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here the above procedure has been followed to handle the inverse of the matrices in crisp 

form separately as lower and upper values. And that is why now we will replace the ‘~’ 

from all notations and will consider the case for lower form first and similarly for upper 

form. Hence the modal matrix for lower form A  is written as 

                                       
        

n
AAAA 

21
                                                                       

The diagonal matrix consisting of eigenvalues in lower form is denoted as
i , as  

nn
 , a 

new set of co-ordinates in lower form x  related to the co-ordinates  Y  is introduced 

by the well known transformation    

                                                     xAY  .                                                                                                

Proceeding by transforming into normal coordinates      xAY   and premultiplying Eq. 

(6.1) with  TA  we get 

                                                     FAxAKAxACAxAMA
TTTT

             (6.2) 

Rewriting Eq. (6.2) in terms of generalized mass and spectral matrices, we obtain 

                                                        FAxSxACAxP
TT

 
                                (6.3) 

where        AMAP
T

   and       AKAS
T

  

Thus we get the uncoupled equation as 

                                     iiiiiii FxSxCxP  
    

for ni ,....,2,1                                  (6.4) 

      where       CACA
T

  and      FFA
T

  

The final solution may be obtained by solving the above differential equations and is 

written in the form  

                                                   xAY   

Similarly we can get the solution for upper form too. After getting the solution using the 

above classical method, Eq. (6.1) is rewritten to get the following set of equations in 

interval form  
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                       1221212212111

~~~~~~~~~~~~~ fykykkycyccym                        (6.5) 
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                     (6.6) 
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                            nnnnnnnnnnn fykykycycym
~~~~~~~~~~

11   
                                        

(6.8)  

Eq. (6.8) is then written as  

                           
    nnnnnnnnn fyykyycym

~~~~~~~~~
11  

                              
(6.9) 

The above equation may now be presented as 

                         nnnnnnn fdkdcym
~~~~

~~~  
                                                                       

(6.10) 

where    11
~~~

and
~~~

  nnnnnn yydyyd   

Here d
~
  and nd

~
 defines the known relative velocity and displacement in interval form for 

thn storey which is calculated by the above classical method. Single layer interval neural 

network is used to solve Eq. (6.10). For this interval neural network, the inputs are taken 

as structural acceleration, relative velocity and relative displacement for the thn storey and 

outputs are taken as the applied force at time t. Using this single layer interval neural 

network, Eq. (6.10) is solved by a continuous training process with n training patterns and 

the converged weight matrix are obtained. This converged weight matrix gives the 

corresponding physical parameters such as nn cm ~,~ and nk
~

 in interval form. Identified 

parameters of thn
 
storey are then used to identify the parameters of th)1( n storey using 

Eq. (6.7). Proceeding in the same manner the parameters of th)2( n storey are determined 

and the process goes on till the unknown parameters for the first storey are obtained. The 

cluster of interval neural network diagram for n  storey structure is shown in Figure 6.1. 



 

 

 

159 

 

6.2 Learning Algorithm for Single Layer Interval Neural 

Network 
 

 

A Neural Network in which at least one of its input, output and weight have interval 

values then the network is said to be an Interval Neural Network, Escarcina et al. [106]. 

Interval Neural Network (INN) is formed by processing units called interval neurons. In 

Interval Neural Networks, neurons are connected in a similar way as they are connected in 

traditional Neural Networks. The structure of a typical single layer INN is shown in Figure 

6.2. The stepwise algorithm for the present INN model with interval computation (defined 

above) is shown below: 

 

Step 1: The input weights  ijW
~

and bias weights i
~

  in interval form are initialized. 

Step 2: The training pairs are considered in the form of  II dZdZdZ
~

,
~

;....
~

,
~

;
~

,
~

2211  where 

                 
      nnI zzzzzzZ ,,..,,,,

~
2211

  are the inputs and  

                  nnI ddddddd ,,...,,,,
~

2211  are the desired values for the given inputs in   

             interval form. 

Step 3: The output of the network is calculated for the input IZ
~

as  

                            
    JJJ YfYfO ,

~
  

             where        iiIIijij ZZWWJYJY  ,,.,,   

             and f is the unipolar activation function defined by  )
~

(exp1
1)

~
(

J
J Y

Yf




 

Step 4: The weight is modified as
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             where change in weights are calculated as 
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            In the similar fashion the bias weights are also updated. 
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Step 5: The error value is computed as 
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Figure 6.1:  Proposed Cluster of Interval Neural Network Model for n Storey Shear 
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Figure 6.2: Single Layer Interval Neural Network 

 

6.3 System Identification of Structural Parameters in 

Fuzzified Form 
 

A shear building with n  storey structural system governed by the following set of linear 

differential equations in fuzzified form is considered here and written as 

                               tttt FXKXCXM }ˆ{=}ˆ]{ˆ[ +}
~̂

]{ˆ[+}
ˆ

]{ˆ[                                           (6.11)                                                                 

 where   Ttnt xxxxX ˆ,...,ˆ,ˆ,ˆˆ
321 ,   T

tnt xxxxX ˆ,...,ˆ,ˆ̂,ˆˆ
321   and

   T
tnt xxxxX ˆ,...,ˆ,ˆ,ˆˆ

321  
  

indicates displacement, acceleration and velocity vectors of 

the consecutive n
th 

storey in fuzzified form respectively. Moreover, M̂  MMcM ,,
 

is nn  mass matrix of the structure in fuzzified form and is given by 
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 Ĉ   nnCCcC represents,,
 damping matrix of the structure in fuzzified form and 

is written as 
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 K̂and   nnKKcK is,,  stiffness matrix of the structure in fuzzified form which 

may be  obtained as 
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Solution for Eq. (6.11) for free vibration with given mass and stiffness values in fuzzified 

form gives the corresponding fuzzy eigenvalues and eigenvectors. These are denoted 

respectively by i̂  and   ii AAcAA ,,ˆ  , ni ,...,1  where  ii  ˆˆ 2   are the system’s 

natural frequency in fuzzified form. It may be noted that the free vibration equation will be 

a fuzzy eigen value problem. The fuzzy eigen value and vector are obtained then by 

considering different sets of lower, centre and upper stiffness and mass values. Here the 

above procedure has been used so that we may handle the inverse of the matrices in crisp 

form separately as lower, centre and upper values. And that is why now we will replace 

the ‘^’ from all notations and will consider the case for lower form first and similarly for 

centre and upper form. Hence the modal matrix Chakraverty [200] for lower form A  may 

be written as 

                                     
        

n
AAAA 

21
                                                                       

Denoting the diagonal matrix made up of the eigenvalues in lower form as i , as  
nn

 , 

a new set of co-ordinates in lower form y  related to the co-ordinates  X  is 

introduced by the well known transformation    

                                                 yAX  .                                                                                                

 Proceeding by transforming into normal coordinates      yAX   and premultiplying Eq. 

(6.11) with  TA  we get 
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                                         FAyAKAyACAyAMA
TTTT

                               (6.12) 

  Rewriting Eq. (6.12) in terms of generalized mass and spectral matrices, we obtain 

                                           FAySyACAyP
TT

 
                                               (6.13) 

      where        AMAP
T

   and       AKAS
T

  

    Thus we get the uncoupled equation as 

                            iiiiiii FySyCyP  
 
for ni ,....,2,1                                            (6.14) 

      where       CACA
T

  and      FFA
T

  

  The above differential equations can be solved and the final solution may be written by  

                                               yAX   

 In the similar manner we can proceed for centre and upper form too. After finding out the 

solution, Eq. (6.11) is rewritten to get the following set of equations in fuzzified form  

                   1221212212111
ˆˆˆˆˆˆˆˆˆˆˆˆˆ fxkxkkxcxccxm                           (6.15) 

  
    23323212332321222

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ fxkxkkxkxcxccxcxm        (6.16) 
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                             (6.17) 

               nnnnnnnnnnn fxkxkxcxcxm ˆˆˆˆˆˆˆˆˆˆˆ 11   
                           

(6.18)  

      Eq. (6.18) is then written as  
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    nnnnnnnnn fxxkxxcxm ˆˆˆˆˆˆˆˆˆ 11  
                                                 

(6.19) 

      The above equation may now be presented as 

nnnnnnn fdkdcxm ˆˆˆˆ
ˆˆˆ  

                                                                            
(6.20) 

      where    11 ˆˆˆandˆˆˆ
  nnnnnn xxdxxd   

Here nd̂  and nd̂  indicate the known relative velocity and displacement in fuzzified form 

for thn storey. Using the single layer fuzzy neural network, Eq. (6.20) is solved. Inputs for 

this fuzzy neural network are taken as structural acceleration, relative velocity and relative 

displacement for the thn storey. Output of the network is taken as the applied force at time 

t. To solve Eq. (6.20) a continuous training process with n training patterns are done using 

fuzzy neural network and the converged weight matrix of the neural network is thus 

obtained. From this weight matrix the corresponding physical parameters such as nn cm ˆ,ˆ

and nk̂  in fuzzified form are obtained. Identified parameters of thn
 
storey are then used to 

identify the parameters of th)1( n storey using Eq. (6.17). Proceeding in the same manner 

the parameters of th)2( n storey are determined and the process goes on till the unknown 

parameters of the first storey are obtained. The cluster of fuzzy neural network diagram for 

n  storey structure is shown in Figure 6.3. 

6.4 Learning Algorithm for Single Layer Fuzzy Neural 

Network 

A Neural Network is said to be a Fuzzy Neural Network if at least one of its input, output 

and weight sets have values in fuzzified form. In fuzzy Neural Networks, neurons are 

connected as they are connected in traditional Neural Networks and a typical single layer 

FNN is shown in Figure 6.4. Following are the steps in FNN using the fuzzy computation 

defined above. 

Step 1: Initialize input weights  jiŴ
 
and bias weights i̂   in fuzzified form. 

Step 2: Present the training pairs in the form JI dZdZdZ ˆ,ˆ;....ˆ,ˆ;ˆ,ˆ
2211  where 
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      nnnI zczzzczzzczzZ ,,,..,,,,,,ˆ 222111

 are inputs and    

                  nnnJ dcdddcdddcddd ,,,...,,,,,,ˆ
222111  are desired values for the given   

               inputs in fuzzified form. The inputs and desired values can be written in h-level 

              form as                hnhnhhhhI zzzzzzZ ,,..,,,,ˆ
211 ,  

                              hnhnhhhhJ ddddddd ,,...,,,,ˆ
2211  

Step 3: Calculate the output of the network for the input IẐ  in h-level form  

                                            
    

hJhJ tNefO ˆˆ   

              where          JjIiOWtNe hihI

J

j
hjihJ 1,2,...,and,...,2,1ˆˆˆˆ

1
 


  

               and f̂  is the fuzzy unipolar activation function defined by 

                                 

      hJ
hJ tNe

tNef ˆexp1
1ˆ


  

Step 4: The error value is then computed as 
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E
 

Step 5: The weight is modified as 
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              where change in weights are calculated as 
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      In the similar fashion the bias weights  
hi̂  is also updated. 
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Figure 6.3:  Proposed Cluster of Fuzzy Neural Network Model for n Storey Shear  
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Figure 6.4: Single Layer Fuzzy Neural Network 

6.5 Numerical Examples 

6.5.1 Interval Case 

The above method has been developed for different storey shear structures with damping 

and without damping cases. Interval neural network is trained till the desired accuracy is 

reached. The methodology has been discussed below by giving the results for following 

two cases. 

 

Case (i) Without Damping:  In this case three problems are considered which are  

a) Two storey 

b) Four storey 

c) Eight storey 

 

Case (ii) With Damping: In this case only one problem of three storey shear structure has                  

been considered  

a) Three storey 
 

 

Case (i) (a) Two storey shear building:  
 

Structural parameter of shear building has been identified using the direct method where 

the data are considered to be in interval form. The data are initially generated by taking the 

theoretical structural parametric values. These generated data are used first to train the 

neural network for n training patterns thus by establishing the converged weight matrix of 

the neural network. Corresponding component of the converged weight matrix gives the 

unknown or present structural parameters. Then the trained and theoretical data has been 
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compared to show the efficiency of the proposed method. These ideas have been applied 

in all the cases. The initial structural parameter matrices in interval form are taken as: 

storey masses  5.2,5.1~
1 m ,  2,1~

2 m  Kg, and the storey stiffnesses  410,390
~

1 k

 310,290
~

2 k Nm
-1

. The harmonic force exerted in the shear building are assumed in 

interval form viz.      )6.1sin(110,)6.1sin(90
~
1 tttf  and    )6.1sin(110),6.1sin(90

~
2 tttf  N. 

Table 6.1 includes the comparison of identified structural parameters with the theoretical 

parameters. The epoch versus mass and stiffness for two storeys are plotted in Figures 6.5-

6.8 to show that how the structural parameters converge. 

 

Table 6.1: Identified mass and stiffness parameters of two storey shear building in interval 

form under the forced vibration test (without damping) 

 

 

 

 

 

       Figure 6.5: Convergence of interval mass parameter (M1) with respect to number of 

epoch for two storey shear structure (without damping) 
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Parameter Storey Theoretical Identified Centered Theoretical Centered Identified 

Mass (Kg) M1 [1.5, 2.5] [1.6136, 2.4988] 2 1.9866 

 M2 [1, 2] [1.0915, 2.2869] 1.5 1.6859 

Stiffness (N m-1) K1 [390, 410] [389.9947,409.9999] 400 399.9994 

K2 [290, 310] [290.008, 309.9951] 300 299.1889 
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         Figure 6.6: Convergence of interval mass parameter (M2) with respect to number of 

epoch for two storey shear structure (without damping) 

 

                        Figure 6.7: Convergence of interval stiffness parameter (K1) with respect to 

number of epoch for two storey shear structure (without damping) 

 

Figure 6.8: Convergence of interval stiffness parameter (K2) with respect to 

number of epoch for two storey shear structure (without damping) 
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Case (i) (b) Four storey shear buildings: 
  

In this problem the structural parameters in interval form are: the storey masses  4,3~
1 m ,

 4,3~
2 m ,  5.3,5.2~

3 m ,  3,2~
4 m Kg, and the storey stiffnesses  1210,1190

~
1 k , 

 1210,1190
~

2 k ,   810,790
~

3 k   610,590
~

4 k Nm
-1

. The harmonic forces exerted in 

the shear building are taken as      )6.1sin(110,)6.1sin(90
~

1 tttf , 

   )6.1sin(110),6.1sin(90
~

2 tttf  ,       tttf  2.3sin5.1,2.3sin5.0
~

3  and

      tttf  2.3sin3,2.3sin0.1
~

4  N. Dynamic displacements of four DOFs with duration 

of 1sec are stored and are used to train the interval neural network for identification 

procedure. Comparisons between the identified and theoretical parameters of the structures 

in interval form are incorporated in Table 6.2. 

 

Table 6.2: Identified mass and stiffness parameters of four storey shear building in interval 

form under the forced-vibration test (without damping) 

 

 
 

 

 

 

 

 

 

 
 

Case (i) (c) Eight storey shear buildings: 
 

In this case the structural parameters viz., the storey masses and stiffnesses of the structure 

in interval form are given in Table 6.3. The harmonic force in interval form exerted in the 

eight storey of the building is       tttf  2.3sin0.3,2.3sin0.1
~

8  N. The dynamic 

displacements of eight DOFs with duration of 1 s are stored and are used to train the 

interval neural network for identification procedure. The identified structural parameters 

are compared with the theoretical structural parameters of this structural system. 

Corresponding result are shown in Table 6.3. 

 

 

 

 

Parameter Storey Theoretical Identified Centered Theoretical Centered Identified 

Mass (Kg) M1 [3, 4] [2.8, 3.999] 3.5 3.5000 

 M2 [3, 4] [2.9, 3.899] 3.5 3.5000 

 M3 [2.5, 3.5] [2.3577, 3.3336] 3 3.0825 

 M4 [2, 3] [1.7690, 2.9828] 2.5 2.4627 

 

Stiffness (N m-1) 

K1 [1190, 1210] [1190.00, 1210.00] 1200 1199.0988 

K2 [1190, 1210] [1190.00, 1210.00] 1200 1199.0008 

K3 [790, 810] [789.998, 809.999] 800 799.9976 

K4 [590, 610] [589.9983, 610.000] 600 599.9999 
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Table 6.3: Identified mass and stiffness parameters of eight-storey shear building in 

interval form under the forced-vibration test (without damping) 

 

 

 

 

 

 

 

 

 

 

 

Case (ii) (a) Three storey shear buildings: 

Structural parameters in interval form are taken as: the storey masses  5.3,5.2~
1 m , 

 ,5.3,5.2~
2 m  5.2,5.1~

3 m Kg and the storey stiffnesses  1210,1190
~

1 k ,  

 810,790
~

2 k    610,590
~

3 k Nm
-1

; the damping values  9,7~
1 c ,  ,6,4~

2 c   5,3~
3 c

N s m
-1

. The harmonic forces exerted in the shear building in interval form are considered 

as      )6.1sin(110,)6.1sin(90
~

1 tttf ,    tttf  6.1sin(110),6.1sin(90
~

2   and 

      tttf  2.3sin5.1,2.3sin5.0
~

3  N. Comparisons between the identified and theoretical 

structural parameters are incorporated in Table 6.4. 

Table 6.4: Identified mass and stiffness parameters of three-storey shear building in 

interval form under the forced-vibration test (with damping) 

 

 

 

 

 

 

Parameter Storey Theoretical Identified Centered Theoretical Centered Identified 

Mass (Kg) M1 [3, 4] [2.899, 3.999] 3.5 3.5000 

 M2 [2.5, 3.5] [2.500, 3.500] 3 3.0000 

 M3 [2.5, 3.5] [2.1858, 3.500] 3 2.9435 

 M4 [2.5, 3.5] [2.4453, 3.500] 3 2.8900 

 M5 [2, 3] [1.6021, 3.00] 2.5 2.4378 

 M6 [2, 3] [1.6644, 3.00] 2.5 2.4998 

 M7 [2, 3] [1.8965, 3.00] 2.5 2.3492 

 M8 [1.5, 2.5] [1.2234, 2.500] 2 1.9928 

 

Stiffness (N m-1) 

K1 [1190, 1210] [1190.00, 1210.00] 1200 1199.9879 

K2 [1190, 1210] [1190.00, 1210.00] 1200 1200.0000 

K3 [790, 810] [789.998, 810.000] 800 799.9985 

K4 [790, 810] [789.999, 810.000] 800 799.9997 

K5 [790, 810] [789.9993, 810.000] 800 799.9992 

K6 [590, 610] [589.999, 610.000] 600 599.9955 

K7 [590, 610] [589.9997, 610.00] 600 599.8989 

K8 [590, 610] [589.9999, 610.00] 600 599.9998 

Parameter Storey Theoretical Identified Centered Theoretical Centered Identified 

Mass (Kg) M1 [2.5, 3.5] [2.50, 3.50] 3 3.0000 

 M2 [2.5, 3.5] [2.2451, 3.3727] 3 2.8881 

 M3 [1.5, 2.5] [1.4321, 2.331] 2 1.6813 

Stiffness (N m-1) 

K1 [1190, 1210] [1190.00, 1210.00] 1200 1200.000 

K2 [790, 810] [789.991, 809.992] 800 799.9997 

K3 [590, 610] [589.997, 609. 998] 600 599.9990 

Damping (N s m-1) 

C1 [7, 9] [7.00, 9.00] 8 8.0000 

C2 [4, 6] [3.9858, 5.9903] 5 4.9948 

C3 [3, 5] [2.9991, 4.9938] 4 3.9835 
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6.5.2 Fuzzy Case 

The above developed method has been used for different storey shear structures with 

damping and without damping cases. Fuzzy neural network training is done till a desired 

accuracy is achieved. The methodology has been discussed by giving the results for 

following two cases. 

Case (i) Without Damping:  In this case three problems are considered which are  

a) Two storey 

b) Four storey 

c) Eight storey 

 

Case (ii) With Damping: In this case only one problem of three storey shear structure has                  

been considered  

         a) Three storey 

 

 

Case (i) (a) Two storey shear buildings: 

Structural parameter of shear building has been identified using the direct method where 

the data are considered to be in fuzzified form. To generate the data initially the theoretical 

values of the structural parameters are taken. These generated data are used first to train the 

neural network for n training patterns thus by establishing the converged weight matrix of 

the neural network. Corresponding component of the converged weight matrix gives the 

unknown or present structural parameters. Then the trained and theoretical data has been 

compared to show the efficiency of the proposed method. These ideas have been applied in 

all the cases. The initial structural parameter matrices in fuzzified form are taken as: storey 

masses  5.2,2,5.1ˆ1 m ,  2,5.1,1ˆ 2 m
 Kg, and the storey stiffnesses  410,400,390ˆ

1 k , 

 310,300,290ˆ
2 k  Nm

-1
. The harmonic force exerted in the shear building are assumed in 

fuzzified form viz.      )6.1sin(110,)6.1sin(100,)6.1sin(90ˆ
1 ttttf  and

   )6.1sin(110),6.1sin(100),6.1sin(90ˆ
2 ttttf  N. Table 6.5 includes the comparison of 

identified structural parameters with the theoretical parameters.  
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Table 6.5: Identified mass and stiffness parameters of two-storey shear building in fuzzified 

form under the forced-vibration test (without damping) 

 

 

 

Case (i) (b) Four storey shear buildings: 

In this problem the structural parameters in fuzzified form are: the storey masses

 4,5.3,3ˆ1 m ,  4,5.3,3ˆ 2 m ,  5.3,3,5.2ˆ 3 m ,  3,5.2,2ˆ 4 m Kg, and the storey 

stiffnesses  1210,1200,1190ˆ
1 k ,  1210,1200,1190ˆ

2 k ,   810,800,790ˆ
3 k  

 610,600,590ˆ
4 k Nm

-1
. The harmonic forces exerted in the shear building are taken as

     )6.1sin(110,)6.1sin(100,)6.1sin(90ˆ
1 ttttf ,    )6.1sin(110),6.1sin(100),6.1sin(90ˆ

2 ttttf 

        ttttf  2.3sin5.1,2.3sin0.1,2.3sin5.0ˆ
3  and         ttttf  2.3sin0.3,2.3sin0.2,2.3sin0.1ˆ

4  N. 

Dynamic displacements of four DOFs with duration of 1s are stored and are used to train 

the fuzzy neural network for identification procedure. Comparisons between the identified 

and theoretical parameters of the structures in fuzzified form are incorporated in Table 6.6. 

 

Table 6.6: Identified mass and stiffness parameters of four storey shear building in 

fuzzified form under the forced-vibration test (without damping) 

 

 

 

 

 

 

Case (i) (c) Eight storey shear buildings: 

In this case the structural parameters viz., the storey masses and stiffnesses of the structure 

in fuzzified form are given in Table 6.7. The harmonic force in fuzzified form exerted in 

the eight storey of the building is         ttttf  2.3sin0.3,2.3sin0.2,2.3sin0.1ˆ
8  N. The 

dynamic displacements of eight DOFs with duration of 1 s are stored and are used to train 

the fuzzy neural network for identification procedure. The identified structural parameters 

Parameter Storey Theoretical Identified 

Mass (Kg) M1 [1.5, 2, 2.5] [1.4650, 1.9866, 2.4939] 

 M2 [1,1.5, 2] [1.0457, 1.6859, 2.3077] 

Stiffness (N m-1) 
K1 [390, 400, 410] [389.9991, 399.9994, 409.9997] 

K2 [290, 300, 310] [290.4673, 299.1889, 308.5296] 

Parameter Storey Theoretical Identified 

Mass (Kg) M1 [3, 3.5, 4] [2.859, 3.549, 4.001] 

 M2 [3, 3.5, 4] [2.900, 3.501, 3.898] 

 M3 [2.5, 3.0, 3.5] [2.2771, 3.0825, 3.2257] 

 M4 [2, 2.5, 3] [1.7690, 2.4627, 2.9828] 

 

Stiffness (N m-1) 

K1 [1190, 1200, 1210] [1190.00, 1199.0988, 1210.00] 

K2 [1190, 1200, 1210] [1190.00, 1199.008, 1210.051] 

K3 [790, 800, 810] [789.9977, 799.9974, 810.001] 

K4 [590, 600, 610] [589.9983, 599.991, 610.000] 
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are compared with the theoretical structural parameters of this structural system. 

Corresponding result are shown in Table 6.7.  

 

Table 6.7: Identified mass and stiffness parameters of eight storey shear building in 

fuzzified form under the forced-vibration test (without damping). 

 

 

 

 

 

 

 

 

Case (ii) (a) Three storey shear buildings: 

Structural parameters in fuzzified form are taken as: the storey masses  5.3,3,5.2~
1 m , 

 ,5.3,3,5.2~
2 m  5.2,2,5.1~

3 m Kg and the storey stiffnesses  1210,1200,1190
~

1 k ,  

 810,800,790
~

2 k  ,  610,600,590
~

3 k Nm
-1

; the damping values  9,8,7~
1 c ,  ,6,5,4~

2 c  

 5,4,3~
3 c N s m

-1
. The harmonic forces exerted in the shear building in fuzzified form are 

considered as      )6.1sin(110,)6.1sin(100,)6.1sin(90
~

1 ttttf , 

   )6.1sin(110),6.1sin(100),6.1sin(90
~

2 ttttf   and         ttttf  2.3sin5.1,2.3sin0.1,2.3sin5.0
~

3 

N. Comparisons between the identified and theoretical structural parameters are 

incorporated in Table 6.8. The epoch versus mass, stiffness and damping for three storey 

are plotted in Figures 6.9-6.17 to show that how the structural parameters converge. 

 

Table 6.8: Identified mass and stiffness parameters of three storey shear building in 

fuzzified form under the forced vibration test (with damping) 

  Parameter Storey Theoretical Identified 

Mass (Kg) M1 [2.5, 3, 3.5] [2.5101, 3.001,3.498] 

 M2 [2.5, 3, 3.5] [2.596, 2.8881, 3.373] 

 M3 [1.5, 2, 2.5] [1.5737, 1.6837, 2.139] 

Stiffness (N m-1) K1 [1190, 1200, 1210] [1190.95, 1199.001, 1210.95] 

K2 [790, 800, 810] [789.991, 799.957, 809.992] 

K3 [590, 600, 610] [589.993, 599.990, 609. 995] 

Damping (N s m-1) C1 [7, 8, 9] [6.599, 7.895, 8.999] 

C2 [4, 5, 6] [3.999, 4.999, 5.999] 

C3 [3, 4, 5] [2.9980, 3.9835, 4.9867] 

Parameter Storey Theoretical Identified 

Mass (Kg) M1 [3, 3.5, 4] [2.899, 3.500, 3.999] 

 M2 [2.5, 3, 3.5] [2.500, 3.00, 3.500] 

 M3 [2.5, 3, 3.5] [2.3425, 2.9435, 3.500] 

 M4 [2.5, 3, 3.5] [2.4504, 2.8900, 3.500] 

 M5 [2, 2.5, 3] [1.6672, 2.4378, 3.00] 

 M6 [2, 2.5, 3] [1.6916, 2.4998, 3.00] 

 M7 [2, 2.5, 3] [1.9706, 2.3492, 3.00] 

 M8 [1.5, 2, 2.5] [1.2336, 1.9928, 2.500] 

 

Stiffness (N m-1) 

K1 [1190, 1200, 1210] [1190.00, 1199.9879, 1210.00] 

K2 [1190, 1200, 1210] [1190.00, 1200.001, 1210.00] 

K3 [790, 800,  810] [789.998, 799.9985, 810.000] 

K4 [790, 800, 810] [789.999, 799.9997, 810.000] 

K5 [790, 800, 810] [789.9998, 799.9992, 810.000] 

K6 [590, 600, 610] [589.9994, 599.9955, 610.000] 

K7 [590, 600, 610] [589.9997, 599.8989, 610.00] 

K8 [590, 600, 610] [589.9988, 599.8999 , 610.00] 
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Figure 6.9: Convergence of fuzzified mass parameter ( 1M̂ ) with respect to number of 

epoch for three storey shear structure (with damping) 

 

         Figure 6.10: Convergence of fuzzified mass parameter ( 2M̂ ) with respect to 

number of epoch for three storey shear structure (with damping) 

 

           Figure 6.11: Convergence of fuzzified mass parameter ( 3M̂ ) with respect to 

number of epoch for three storey shear structure (with damping) 
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Figure 6.12: Convergence of fuzzified damping parameter (C1) with respect to 

number of epoch for three storey shear structure (with damping) 

 

Figure 6.13: Convergence of fuzzified damping parameter (C2) with respect to 

number of epoch for three storey shear structure (with damping) 

 

Figure 6.14: Convergence of fuzzified stiffness parameter (C3) with respect to 

number of epoch for three storey shear structure (with damping). 
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Figure 6.15: Convergence of fuzzified stiffness parameter (K1) with respect to 

number of epoch for three storey shear structure (with damping). 

 

Figure 6.16: Convergence of fuzzified stiffness parameter (K2) with respect to 

number of epoch for three storey shear structure (with damping). 

 

            Figure 6.17: Convergence of fuzzified stiffness parameter (K3) with respect to 

number of epoch for three storey shear structure (with damping). 
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6.6 Conclusion 

This paper uses the powerful soft computing technique viz. single layer Interval and Fuzzy 

Neural Network for identification of uncertain structural parameters. If the available 

information and/or data are uncertain or nonprobabilistic in nature, then the mathematical 

model needs to be developed accordingly. As such, interval and fuzzy neural network has 

been developed which can handle uncertain (interval and fuzzified) data. Here, direct 

method for system identification of uncertain multistory shear structures from their 

dynamic responses has been proposed in interval and fuzzified form. Governing equations 

of motion are modified based on relative responses of consecutive stories and are 

implemented in a series/cluster of interval and fuzzy neural network models. Various 

example problems have been solved and related results are reported to show the reliability 

and powerfulness of the method. It is worth mentioning that the cluster of INN and FNN 

may directly estimate the structural parameters in interval and fuzzified form. The interval 

and fuzzy estimates are certainly useful for design engineers by knowing the bounds of the 

structural parameters. 
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Chapter 7 

Functional Link Neural Network Based 

System Identification from                  

Frequency Data 
 

The objective of this Chapter is to estimate structural parameters by developing a novel 

Functional Link Neural Network (FLNN) model. Functional Link Neural Network model 

is more efficient than Multi layer Neural Network (MNN) as computation is less because 

hidden layer is not required. Here single layer neural network with multi-input and multi-

output with feed forward neural network and principle of error back propagation has been 

used to identify structural parameters. The hidden layer is excluded by enlarging the input 

patterns with the help of Chebyshev, Legendre and Hermite polynomials. Comparison of 

results among MNN, Chebyshev Neural Network (ChNN), Legendre Neural Network 

(LeNN), Hermite Neural Network (HNN) and desired are considered and it is found that 

Functional Link Neural Network models are more effective than MNN. 

 

7.1 Modelling for System Identification of Multi-Storey 

Shear Buildings 
 

System Identification methods in particular uses the values of the parameters initially 

given to the structure by an engineer. The governing equation of motion for n-storey shear 

structure without damping may be written by n coupled second order ordinary differential 

equations as 

                                                        0 YKYM                                                       (7.1) 

Here  M  is a nn   mass matrix which is given as  

                   



























n

n

m

m

m

m

M

00

00

000

00

1

2

1











     

The nn   stiffness matrix may be written as           
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and    T
nyyyY ,,, 21  is the displacement vector.  

The above free vibration equation is solved for finding the frequency and mode shapes. 

Putting     tieY  in free vibration equation (7.1) we get the following characteristic 

equation  

                                                  0
2

 MK                                                   (7.2) 

where     
2

 are the eigenvalues or the frequency and    are mode shapes of the 

structure respectively. The frequencies are considered as the input and the stiffness 

parameters are considered as the output for FLNN. 

 

7.2 Functional Link Neural Network 
 

FLNN consists of a single layer structure where the hidden nodes are excluded and the 

inputs patterns are expanded to higher dimensional patterns by means of functional 

expansion block. Architecture of the FLNN model comprises of two parts viz. functional 

expansion part and learning part respectively. Due to the absence of hidden layer, FLNNs 

are computationally more efficient and faster than MNN. It is worth mentioning that MNN 

is well known and the detail training and model etc. may be found in various books and 

papers, Zurada [186]. As such here, we will include details about the FLNN only. In 

FLNN, the input vector is expanded to higher dimensional vector by some suitable 

functions. Let us consider i input vector denoted as  T

ixxxX ,,, 21  . Thus, the 

enhanced input vector can be expressed as  XUX j
T  , where       XuXuXuU N,,, 21 

 N
jU 1  

are set of functions. These functions are replaced here by set of orthogonal 

polynomials. Orthogonal polynomials used for the present FLNN model are Chebyshev, 

Legendre and Hermite polynomials. Here basic orthogonal polynomials or any other 

orthogonal polynomials may be used to train this FLNN. For, basic orthogonal 

polynomials for training we may start with algebraic polynomials and then othogonalising 

them using Grahm Schmidt Orthogonalisation procedure. These are certainly simple but 
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sometimes suffer from instability. As such, instead of these basic orthogonal polynomials, 

Chebyshev, Legendre and Hermite polynomials have been used here. Structure of single 

layer multi-input and multi-output FLNN model that has been considered and its learning 

algorithms have been discussed below. 

 

7.3 Learning Algorithm of Functional Link Neural Network 

(FLNN) 
 

In FLNN, the weights are updated to minimize a given cost function. Here Feed forward 

and error back propagation algorithm has been used for learning and for updating the 

weights of FLNN. Inputs iix   are the frequencies and outputs JJ kO   are the stiffness 

parameters. As such, linear sum JZ can be calculated as 

                    

 

polynomial theoforder theisandorsinput vect ofnumber 

1

jiJ

XUwZ j

N

j
jjJ



 




       
(7.3)                                                 

where jw are the weights, 
j  are the bias and  XU j  are expanded inputs vector. These 

 XU j  are considered here as Chebyshev, Legendre and Hermite polynomials. 

The net output is given as 

                                                          JJ ZfO   

Here bipolar sigmoidal function has been used as the activation function and defined as 

                                                       
 
 J

J

Z

Z
f

exp1

exp1




  

Cost function used for minimization of error is defined as                                                                                                                   

                                              
  22

2

1

2

1
jjj eOdE 

                                                
(7.4) 

where Jd  is the desired output, JO  is the target output and Je  is the error value. The error 

value is computed to obtain the desired accuracy. Weights are updated as follows: 

                                          
    jjj wOldwNeww 

                                       
(7.5) 

where change in weights are calculated as 

                      

      XUOOd
w

E
w iJJJ

j
j

2
1
















 

                                

(7.6) 
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Here   is the learning parameter. We follow the same procedure to update the bias 
j . 

The multi-input and multi-output single layer FLNN architecture is shown in Figure 7.1, 

where  N

jjU
1
 are set of Chebyshev, Legendre and Hermite orthogonal polynomials. 
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Figure 7.1: Single Layer Multi-Input and Multi-Output Functional Link Neural Network 

 

7.3.1 Structure of Chebyshev Neural Network 
 

Here we have developed a single layer multi-input and multi-output Chebyshev Neural 

Network (ChNN) model to study System Identification problems. The structure of ChNN 

comprises of multiple input nodes, a functional expansion block consists of Chebyshev 

polynomials and multiple output nodes. Functional expansion part and learning part are 

the two parts of Chebyshev neural network. Each input vector is expanded to several terms 

of Chebyshev polynomials so that they may be viewed as a new input vector in the 
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functional expansion part. Chebyshev polynomials are a set of orthogonal polynomials. 

Let us consider i input vector denoted as  T

ixxxX ,,, 21  . Chebyshev polynomial of j
th

 

order is denoted by  xT j , where -1 < x < 1. First four Chebyshev polynomials may be 

written as (Gerald [202] and Bhatt and Chakraverty [203])  

 

 

 

 

  188

34

12

1

24

4

3

3

2

2

1

0











xxxT

xxxT

xxT

xxT

xT

 

Higher order Chebyshev polynomials may be generated by the well known recursive 

formula                     

                                                 xTxxTxT jjj 11 2  
                                                  (7.7) 

7.3.2 Structure of Legendre Neural Network 
 

In Legendre neural network (LeNN), the suitable functions are taken as Legendre 

orthogonal polynomials in the expansion block. In functional expansion, each input is 

expanded to several terms using Legendre polynomials to have a new input vector. Here 

we have developed a single layer multi-input and multi-output Legendre Neural Network 

(LeNN) model to study System Identification problems. The structure of LeNN comprises 

of multiple input nodes (which is a functional expansion block obtained by Legendre 

polynomials) and multiple output nodes. LeNN involves less computations and offers 

faster training compared to MNN. The Legendre polynomial of j
th

 order is denoted by

 xL j , where -1 <x< 1. The first five Legendre polynomials may be written as in (Gerald 

[202] and Bhatt and Chakraverty [203])  
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Legendre polynomials of various orders may be obtained by the well known recursive rule 
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7.3.3 Structure of Hermite Neural Network 
 

The structure of Hermite Neural Network (HNN) comprises of multiple input nodes 

(which now is a functional expansion block obtained from Hermite polynomials) and 

multiple output nodes. Here, again each input data is expanded to several terms using 

Hermite polynomials and these are now considered as a new input vector. A single layer 

multi-input and multi-output Hermite Neural Network (HNN) model is also developed for 

solving system identification problems. Hermite polynomial of j
th

 order is denoted by

 xH j , where  x . The First five Hermite polynomials can be written as (Gerald 

[202] and Bhatt and Chakraverty [203])  

 

 
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  124816
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2

1
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







xxxH

xxxH

xxH

xxH

xH

 

Various orders of Hermite polynomials may be generated by the well known recursive 

formula 

7.4 Results and Discussion 
 

The procedure is demonstrated using few example problems. It may be mentioned that the 

frequency may practically be obtained by some experiments. But due to non availability of 

experimental data here the analyses have been done by numerical simulation. Present 

problem is first solved as forward vibration problem and set of frequency parameters are 

computed from initial design (stiffness) parameters. These designed stiffness parameters 

are randomized and training sets of frequency parameters are generated beforehand. Now 

the developed Functional Link neural network is trained with these patterns till the desired 

accuracy is reached. The orthogonal polynomials considered for present Functional Link 

neural network are Chebyshev, Legendre and Hermite polynomials. The results for 

different storey shear building, comparison tables and figures have been presented and 

discussed in the subsequent paragraphs. 

 

         xjLxxLj
j

xL jjj 11 12
1

1
 


  

 

(7.8) 

 
  

     xjHxxHxH jjj 11 22  
 

(7.9) 
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7.4.1. Chebyshev Neural Network Based Results 
 

Here examples of two, five and ten storey shear buildings are considered. For present 

Functional Link neural network Chebyshev polynomial upto 4
th

 order are taken. 

 

Example 1. Two storey shear buildings: 

The inputs are taken as frequency and outputs are taken as stiffness parameters. Here two 

problems have been solved. For the first problem the storey masses are taken as 

000,3621  mm and the initial designed stiffness parameter as 000,1001 k and

000,202 k . Then for the second problem same masses are considered as that of the first 

problem and the stiffness are taken as 000,501 k and 000,202 k . From these initial 

designed values of stiffness and masses we have generated 50 sets of data for frequency. 

These 50 training patterns are used for training the ChNN model. For these two problems 

different orders of Chebyshev polynomials are used for function expansion to obtain 

minimum error and to reach an accuracy of 0.001. Figure 7.2(a) shows the comparisons 

between the ChNN, multi layer neural network (MNN) and the desired for first floor and 

Figure 7.2(b) shows the comparisons between the ChNN, multi layer neural network 

(MNN) and the desired for second floor with 10 data for first problem. Comparison 

between the ChNN with fourth order polynomial, multi layer neural network (MNN) and 

the desired for 10 data are given in Table 7.1(a). The result between the ChNN with 

second order polynomial and the desired with 10 data have been shown in Table 7.1(b). 

Tables are shown for second problem. It is found that the ChNN takes less computation 

time than the MNN. The CPU time for the first problem using ChNN is 132.367 secs and 

with MNN is 526.332 secs. Similarly for second problem the CPU time for ChNN is 

81.753 secs and for MNN it is 277.550 secs. 

 

 

Figure 7.2(a): Comparison among ChNN, MNN and desired values of 1k for a two storey 

shear buildings  
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Figure 7.2(b): Comparison among ChNN, MNN and desired values of 2k for a two storey 

shear buildings 

 

Table 7.1(a): Comparison among ChNN (4
th

 order polynomial), MNN and desired values 

of 1k and 2k for a two storey shear buildings 

 

Data No. 
1k (ChNN) 1k  (MNN) 1k  (Des) 2k  (ChNN) 2k  (MNN) 2k  (Des) 

1 57469.3279 57411.7494 57464.7003 26107.958 26010.9841 26160.4468 

2 62825.8206 62023.7934 62875.4127 24791.5608 25420.4664 24732.8885 

3 92122.5463 91812.6547 92135.8628 23575.2357 23235.933 23516.5951 

4 62786.9365 63303.2088 62714.1089 28335.1854 27456.8037 28308.2863 

5 90718.5495 91555.9348 90714.2413 25805.8226 26867.7371 25852.6409 

6 62195.4481 61271.8187 62176.2484 25493.6863 25991.0228 25497.2361 

7 96494.7137 96137.939 96463.1812 29154.2619 28712.255 29171.9366 

8 67421.5183 68115.7209 67499.1883 22884.5472 23019.0868 22858.3902 

9 60029.3617 60044.0714 59829.7625 27580.1925 26905.8705 27572.0023 

10 62575.7691 62485.4718 62554.1929 27498.2423 27144.8748 27537.2909 

 

 

Table 7.1(b): Comparison between the ChNN (2
nd

 order polynomial) and desired values of 

1k and 2k for a two storey shear buildings 

 

Data 

No. 1k (ChNN) 1k  (Des) 2k  (ChNN) 2k  (Des) 

1 57528.0526 57464.7003 25525.1895 26160.4468 

2 62903.8683 62875.4127 25303.1474 24732.8885 

3 92188.8276 92035.8628 23033.4168 23516.5951 

4 62799.80 62714.1089 28250.8314 28308.2863 

5 90672.7283 90714.2413 25782.2893 25852.6409 

6 62264.1615 62176.2484 25528.2606 25497.2361 

7 96311.0601 96463.1812 29253.6982 29171.9366 

8 67550.7045 67499.1883 22796.4967 22858.3902 

9 60151.4052 59829.7625 27421.2854 27572.0023 

10 62444.6976 62554.1929 27406.7464 27537.2909 
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Example 2. Five storey shear buildings: 

Two problems have been solved for five storey shear buildings too. Masses for the first 

problem is considered as 000,3654321  mmmmm
 

and the initial stiffness 

parameter as 000,501 k and 000,205432  kkkk . For second problem the masses 

are taken as 000,80,000,90,000,102,000,106 54321  mmmmm and the stiffness 

parameters are taken as 0000,150,0000,220,0000,450,0000,650 54321  kkkkk . 

We have generated 40 sets of data of frequency parameters. Again different orders of 

Chebyshev polynomials are taken to optimize the error so as to get the required accuracy 

of 0.001. For first problem, comparison among ChNN, MNN and the desired values for 10 

typical data for fifth floor has been plotted in Figure 7.3. After training, 10 trained data 

among 40 data are given in tables. Comparison of the ChNN and the desired values for 

second problem for first to third floors are incorporated in Table 7.2(a) and for fourth and 

fifth floor in Table 7.2(b). 

 

 

Figure 7.3: Comparison among ChNN, MNN and desired values of 5k for a five storey 

shear buildings 
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Table 7.2(a): Comparison between the ChNN (with 4
th

 order polynomial) and desired 

values of 1k , 2k  and 3k for a five storey shear buildings 

 

Table 7.2(b): Comparison between the ChNN (with 4
th

 order polynomial) and desired 

values of 4k and 5k for a five storey shear buildings 

 

 

 

 

 

 

 

 

 

 

Example 3. Ten storey shear buildings: 

Finally, ten storey shear building have been considered and two problems are taken into 

consideration. The masses for each storey are considered as 000,361021  mmm  . 

The initial stiffness parameter for first problem is considered as 

000,20,000,50 10321  kkkk   and for second problem as

000,20,000,50,000,100 10321  kkkk  . 50 data sets of frequency parameters are 

Data No. 
1k (ChNN) 1k  (Des) 2k  (ChNN) 2k  (Des) 3k (ChNN) 3k  (Des) 

1 6881531.6286 6881569.296 5355840.5633 5355821.8396 3589678.5908 3589606.5782 

2 7017115.8831 7017164.5028 6432151.1137 6432105.4992 3052967.4767 3052911.0714 

3 8295709.788 8295731.3697 5740122.9586 5740110.1083 3872579.1716 3872540.8414 

4 7686709.9245 7686723.7208 5890704.5615 5890779.9038 3662727.0359 3662774.1323 

5 7507624.4942 7507680.1637 5940326.3145 5940329.224 2920072.5968 2920062.0842 

6 7725635.3312 7725619.1777 5193705.9015 5193790.3806 3108467.4182 3108424.7437 

7 8138837.0332 8138844.4845 5533973.5232 5533980.8411 2972706.8871 2972779.7972 

8 7563772.0232 7563778.339 5613303.7103 5613389.264 3751104.4253 3751109.2845 

9 6904186.4148 6904150.1931 4812952.7444 4812990.4382 3668523.5351 3668542.2114 

10 7407732.3345 7407786.9314 5624166.4634 5624112.0911 3060557.3664 3060555.6901 

No. of Data 
4k  (ChNN) 4k  (Des) 5k  (ChNN) 5k  (Des) 

1 3587542.3795 3587505.1483 3168395.9688 3168378.1221 

2 4090483.6141 4090426.9743 1531271.7699 1531289.3854 

3 3768496.8374 3768465.1965 3227407.2961 3227421.7301 

4 3611193.2463 3611143.7163 1656141.9502 1656138.1061 

5 2418663.7157 2418668.479 2838033.1023 2838085.1802 

6 2979813.0581 2979861.3143 2500423.598 2500422.6486 

7 3381877.9267 3381809.4608 1935961.4321 1935987.5975 

8 3118793.0405 3118760.0959 2643205.0016 2643231.4508 

9 2300606.817 2300679.9735 1744356.3896 1744378.3018 

10 2657340.6508 2657375.168 2842360.1153 2842332.466 
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generated for training. The training is done using Chebyshev polynomial of second order. 

The figure plots of eighth and tenth storey for comparing the ChNN, MNN and the desired 

values for 10 data are shown in Figures 7.4(a) and 7.4(b) for the first problem. Table 7.3 

shows the comparison between ChNN and desired for eighth and tenth floor for second 

problem with 10 data. The CPU time for the first problem using ChNN is 445.945 secs 

and with MNN it is 1134.877 secs. Similarly for second problem the CPU time for ChNN 

is 216.391 secs and for MNN is 1120.057 secs. 

 

 

Figure 7.4(a): Comparison among ChNN, MNN and desired values of 8k for a ten storey 

shear buildings 

 

Figure 7.4(b): Comparison among ChNN, MNN and desired values of 10k for a ten storey 

shear buildings 
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Table 7.3: Comparison between the ChNN (with 2
nd

 order polynomial) and desired values 

of 8k and 10k for a ten storey shear buildings 

 

 

 

 

 

 

 

 

 

 

 
 

7.4.2. Legendre and Hermite Neural Network Based Results 
 

The orthogonal polynomials considered for present Functional Link neural network are 

Legendre and Hermite polynomial of 3
rd

 order. In order to validate the present method, 

testing has been done for three and six storey shear buildings. After training, the 

converged weights are stored and these converged weights are used then for testing. 

 

Example 1. Three storey shear building: 

As mentioned earlier the frequency parameters are taken as the inputs and stiffness 

parameters are taken as the outputs. Here two problems have been solved. For the first 

problem the storey mass are taken as 36000321  mmm
 

and the initial stiffness 

parameters as 50000,100000 21  kk and 200003 k  Ref. [115]. Then for the second 

problem mass are considered as 90000and102000,106000 321  mmm
 

and the 

stiffness are taken as  4500000,6800000 21  kk  and 45000003 k . Here, 50 sets of data 

for frequency have been obtained from these initial values of stiffness and masses. These 

50 patterns are used for training the FLNN model. Legendre and Hermite polynomials of 

3
rd

 order are used as function expansion to obtain minimum error and to reach an accuracy 

of 0.001. Training with MNN is also done with different hidden nodes in the hidden layer. 

Figures 7.5(a)-7.5(c) represent the comparisons between the LeNN, HNN, MNN and 

desired for first, second and third floor with 10 data for first problem. In Figures 7.5(a)-

7.5(c), the MNN is shown with 5, 10 and 15 hidden nodes. Comparison between the 

LeNN, HNN and desired for second problem with 10 data are given in Table 7.4. It is 

Data No. 
8k  (ChNN) 8k  (Des) 10k  (ChNN) 10k  (Des) 

1 28439.8549 28407.1726 20751.0908 20758.5429 

2 22511.5318 22542.8218 20552.6015 20539.5012 

3 28132.7532 28142.8483 25318.4456 25307.9755 

4 22490.4973 22435.2497 27722.4485 27791.6723 

5 29235.2651 29292.6362 29372.4103 29340.1068 

6 23494.9922 23499.8377 21291.9164 21299.0621 

7 21921.5911 21965.9525 25622.4117 25688.2366 

8 22508.426 22510.8386 24663.5239 24693.9064 

9 26141.9975 26160.4468 19946.1473 20119.0207 

10 24743.1849 24732.8885 23318.3256 23371.2264 
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found that LeNN and HNN take less computation time than MNN. The CPU time for the 

first problem using LeNN is 207.29 secs and with HNN is 202.83 secs. The CPU time for 

MNN with 5 nodes is 405.55 secs, with 10 nodes are 584.12 and with 15 nodes are 672.91 

secs. Similarly for second problem the CPU time for LeNN is 197.01 secs and for HNN it 

is 190.44 secs. 

 

 

Figure 7.5(a): Comparison among LeNN, HNN, MNN and desired values of 1k for three 

storey shear building 

 

 
 

Figure 7.5(b): Comparison among LeNN, HNN, MNN and desired values of 2k for three 

storey shear building 
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Figure 7.5(c): Comparison among LeNN, HNN, MNN and desired values of 3k for three 

storey shear building 

 

Table 7.4: Comparison among LeNN, HNN and desired values of 21 , kk and 3k for three 

                 storey shear building 

 

Example 2. Six storey shear building: 

In this example, two problems of six storey shear building have been solved too. We 

assume masses for the first problem as 000,36654321  mmmmmm and the 

initial stiffness parameter as 000,50,100000 21  kk and 000,206543  kkkk  Ref. 

[35]. For second problem the masses are taken as 

000,80,000,90,000,102,000,106 654321  mmmmmm
 

and the stiffness 

parameters are taken as 
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K3(LeNN with 3rd order)

K3(HNN with 3rd order)

K3(MNN with 5 hidden nodes)

K3(MNN with 10 hidden nodes)

K3(MNN with 15 hidden nodes)

K3(Des)

Typical 

Ten Data 1k (LeNN) 1k (HNN) 1k (Des) 2k (LeNN) 2k (HNN) 2k (Des) 3k (LeNN) 3k (HNN) 3k (Des) 

1 8166891.815 8166879.071 8166831.733 6275596.137 6275550.341 6275541.908 5155138.085 5155137.549 5155130.868 

2 8208099.075 8208056.278 8208094.860 5282337.258 5282334.683 5282365.990 5842512.778 5842584.511 5842528.740 

3 7684621.666 7684644.146 7684610.826 6038223.915 6038253.902 6038228.774 5377268.866 5377294.804 5377289.965 

4 6839178.554 6839118.267 6839155.247 5293559.749 5293552.063 5293583.034 6167087.557 6167012.382 6167001.191 

5 7461742.628 7461791.407 7461715.760 6117012.838 6117058.356 6117028.191 6037790.441 6037798.108 6037708.504 

6 7648662.380 7648642.835 7648618.993 6010110.639 6010149.282 6010154.198 4834564.691 4834558.095 4834507.091 

7 7340517.277 7340531.536 7340540.846 5254741.044 5254764.92 5254791.089 6223938.823 6223997.93 6223960.957 

8 7194163.625 7194110.573 7194107.596 4932043.569 4932077.61 4932037.831 6479793.211 6479720.851 6479744.307 

9 8443480.397 8443451.051 8443442.369 6080830.900 6080854.309 6080814.435 5528899.2411 5528836.285 5528846.913 

10 7659868.654 7659889.998 7659842.818 6398670.444 6398621.626 6398607.823 6268594.081 6268540.12 6268562.046 
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1500000,2200000,4500000,6800000 654321  kkkkkk . In this case, 40 sets 

of frequency parameter data are generated. Again Legendre and Hermite polynomials with 

3
rd

 order are taken to optimize the error so as to get the required accuracy of 0.001. 

Training with MNN is also done with different hidden nodes in the hidden layer. For first 

problem, comparison among LeNN, HNN, MNN and the desired values for 10 typical data 

among 40 data for sixth floor has been depicted in Figure 7.6. Figure 7.6 also shows MNN 

with 5, 10 and 15 hidden nodes. Typical 10 trained data among 40 data are also given in 

Tables 7.5(a) and 7.5(b) after training of the model. Comparison of the LeNN, HNN and 

the desired values for second problem for first to third floors are incorporated in Table 

7.5(a) and for fourth to sixth floor in Table 7.5(b). 

 

 

Figure 7.6: Comparison among LeNN, HNN, MNN and desired values of 6k for six storey 

shear building 

 

 

Table 7.5(a): Comparison among LeNN, HNN and desired values of 1k , 2k  and 3k for six 

storey shear building 
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K6(LeNN with 3rd order)

K6(HNN with 3rd order)

K6(MNN with 5 hidden nodes)

K6(MNN with 10 hidden nodes)

K6(MNN with 15 hidden nodes)

K6(Des)

Typical 

Ten Data 1k (LeNN) 1k (HNN) 1k (Des) 2k (LeNN) 2k (HNN) 2k (Des) 
3k (LeNN) 3k (HNN) 3k (Des) 

1 7660519.8106 7660546.539 7660555.690 4957397.7855 4957389.715 4957375.168 3542360.128 3542376.539 3542332.466 

2 8187581.1215 8187551.797 8187505.148 6168315.1558 6168355.833 6168378.1221 3399119.4649 3399154.551 3399171.0962 

3 8690486.5155 8690424.938 8690426.974 4531232.9757 4531207.659 4531289.3854 2311903.0292 2311905.159 2311952.3148 

4 8368492.8618 8368471.663 8368465.196 6227442.581 6227446.419 6227421.7301 2312635.9764 2312660.667 2312686.0371 

5 8211136.7641 8211151.927 8211143.716 4656157.5112 4656121.041 4656138.1061 2505031.302 2505036.048 2505001.274 

6 7018636.1162 7018672.196 7018668.479 5838058.5836 5838065.092 5838085.1802 2239264.2552 2239297.234 2239242.1335 

7 7579802.6927 7579803.165 7579861.314 5500469.8454 5500465.043 5500422.6486 3070319.9162 3070379.354 3070351.0914 

8 7981885.9134 7981872.37 7981809.460 4935946.6738 4935936.303 4935987.5975 3864452.6906 3864442.281 3864442.9506 

9 7718700.8278 7718731.693 7718760.095 5643207.4739 5643203.455 5643231.4508 3434791.0545 3434791.949 3434780.3429 

10 7900611.1252 7900673.426 6900679.973 4744393.8144 4744393.957 4744378.301 3240252.9808 3240230.646 3240258.8306 
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Table 7.5(b): Comparison among LeNN, HNN and desired values of 54 , kk and 6k for six 

storey shear building 

 

 

Example 3. Eight storey shear building: 

Finally, eight storey shear building have been considered and two problems are taken into 

consideration. The masses for each storey are considered as 000,36821  mmm  . In 

the first problem, the initial stiffness parameter has been considered as 

000,20,000,50,000,100 8321  kkkk 
 

Ref. [115] and for second problem as 

000,20,000,50 8321  kkkk  . 50 data sets of frequency parameters are generated for 

training. The training is done with Legendre, Hermite polynomial of 3
rd 

order and MNN. 

The figure plots of seventh and eighth storey for comparing the LeNN, HNN, MNN and 

the desired values for 10 data are shown in Figures 7.7(a) and 7.7(b) for the first problem. 

Figures 7.7(a) and 7.7(b) show the MNN with 5, 10 and 15 hidden nodes. Table 7.6 

depicts the comparison between LeNN, HNN and desired for seventh and eighth floor for 

second problem with 10 data. The CPU time for the first problem using LeNN is 266.366 

secs and with HNN is 259.465 secs. The CPU time for MNN with 5 nodes is 722.58 secs, 

with 10 nodes is 1372.57secs and with 15 nodes is 1784.23 secs. Similarly for second 

problem the CPU time for LeNN is 229.33secs and for HNN it is 216.67 secs. 

 

 

 

 

 

 

 

Typical 

Ten Data 4k (LeNN) 4k (HNN) 4k (Des) 
5k (LeNN) 5k (HNN) 5k (Des) 6k (LeNN) 6k (HNN) 6k (Des) 

1 3927703.480 3927785.987 3927736.445 3333671.057 3333615.089 3333642.540 2533973.913 2533970.098 2533958.029    

2 2395302.526 2395348.251 2395395.836 3473929.169 3473921.922 3473936.549 1842065.569 1842028.289 1842096.035    

3 4016138.966    4016110.094 4016104.406 2510235.769 2510237.67 2510266.203 3377167.146 3377100.724 3377115.728    

4 2416089.907 2416057.6 2416033.388 2042841.718 2042887.521 2042843.248 2680976.512 2680999.196 2680966.354    

5 3233924.212 3233987.713 3233993.516 1701570.859 1701548.9 1701501.023 2381246.247 2381211.714 2381269.361    

6 2486386.514 2486394.746 2486312.044 2515601.986 2515668.984 2515697.661 3383877.666 3383846.444 3383837.860    

7 3318776.074 3318768.873 3318741.144 2671260.261 2671298.86 2671218.251 2811851.186 2811887.815 2811827.640    

8 2209111.417 2209145.828 2209159.247 3025735.607 3025757.716 3025774.191 2403874.964 2403881.418 2403891.418    

9 3733393.608 3733315.762 3733363.997 1665925.489 1665943.233 1665925.298 3179319.638 3179367.93 3179394.841    

10 3897470.604    3897416.124 3897418.452 2823169.686 2823176.461 2823192.386 2565234.048 2565229.185 2565247.004    
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Figure 7.7(a): Comparison among LeNN, HNN, MNN and desired values of 7k for eight 

storey shear building 

 

 

Figure 7.7(b): Comparison among LeNN, HNN, MNN and desired values of 8k for eight 

storey shear building 
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K8(HNN with 3rd order)

K8(MNN with 5 hidden nodes)

K8(MNN with 10 hidden nodes)

K8(MNN with 16 hidden nodes)

K8(Des)



 

 

 

196 

 

Table 7.6: Comparison among LeNN, HNN and desired values of 7k and 8k for eight 

storey shear building 

 

 

 

 

 

 

 

 

 

 

7.4.2.1 Testing 

Further, for health monitoring and validation of the present method testing has been done. 

In Example 1, FLNN is trained with some random weights till the desired accuracy is 

reached and then the converged weights are stored. Now, to validate the model for 

checking the present health of a structure we consider a new structure with the same mass 

and with reduced stiffness parameters. Accordingly first the forward problem has been 

solved and frequency parameters are generated numerically. This is done because the 

experimental data is not available. Otherwise we may have the experimental frequencies 

which may be fed into the ANN model as input for the testing. For first scenario, three 

mass and stiffness parameter values for generating frequency parameters for three storey 

shear building (new) for testing are taken as 36000321  mmm
 

and 

10000and40000,90000 321  kkk . Testing is done with the stored converged weights 

of the first problem of Example 1 considering the Legendre and Hermite polynomial of 3
rd

 

order as the functional link. Frequency parameters which are numerically generated from 

the above set of data are used as input for testing. As mentioned above, the converged 

weight from example 1 is taken directly and then new data are fed in the ANN model. 

Accordingly, comparison among the results from   LeNN and HNN including desired for 

three storey shear buildings for typical 10 data are shown in Figures 7.8(a)-7.8(c). In 

second scenario, the mass and stiffness parameters are taken as

000,80,000,90,000,102,000,106 654321  mmmmmm

1000000,1200000,3500000,5800000 654321  kkkkkk
 

for six storey shear 

Typical 

Ten Data 
7k (LeNN) 7k (HNN) 7k (Des) 8k (LeNN) 8k (HNN) 8k (Des) 

1 2791576.5467 2791539.646 2791583.5342 2531520.0203 2531589.306 2531531.3064 

2 2403225.2295 2403214.522 2403299.1454 3175663.0671 3175696.93 3175681.3817 

3 2835888.5996 2835840.332 2835883.1989 3341549.659 3341520.379 3341580.216 

4 2998304.5982 2998312.964 2998370.2578 2496425.2655 2496478.28 2496455.8589 

5 2701787.9967 2701730.545 2701701.0524 2055232.9371 2055299.432 2055222.2445 

6 2850861.5281 2850804.718 2850812.1359 2805085.2674 2805003.571 2805039.9215 

7 2995958.358 2995962.706 2995954.9856 3334510.8628 3334523.808 3334597.6076 

8 2433367.722 24333082.426 2433373.7681 2519609.9897 2519628.394 2519678.907 

9 2800868.753 2800804.188 2800838.9384 3448332.152 3448309.02 3448382.9676 

10 2312450.8118 2312437.821 2312462.3784 1894553.2781 1894503.591 1894557.8842 
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buildings. For this case the stored converged weights of second problem of example 2 has 

been considered. Results have been computed from ANN models of Legendre and 

Hermite polynomial of 3
rd

 order. Again comparison among the testing value of LeNN, 

HNN and desired are incorporated in Tables 7.7(a)-7.7(b) for typical 10 data. 

 

 

Figure 7.8(a): Comparison of LeNN, HNN results (testing) with desired of 1k for three 

storey shear building 

 

Figure 7.8(b): Comparison of LeNN, HNN results (testing) with desired of 2k for three 

storey shear building 

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

12
x 10

5

Typical ten Data

S
t
i
f
f
n

e
s
s

Three storey shear structure

 

 

K1(LeNN with 3rd order)

K2(HNN with 3rd order)

K1(Des)

1 2 3 4 5 6 7 8 9 10
6

6.5

7

7.5

8

8.5

9

9.5

10
x 10

4

Typical ten Data

S
t
i
f
f
n

e
s
s

Three storey shear structure

 

 

K2(LeNN with 3rd order)

K2(HNN with 3rd order)

K2(Des)



 

 

 

198 

 

 

Figure 7.8(c): Comparison of LeNN, HNN results (testing) with desired of 3k for three 

storey shear building 

 

Table 7.7(a): Comparison of LeNN, HNN results (testing) with desired for 1k , 2k  and 3k

for six storey shear building 

 

Table 7.7(b):  Comparison of LeNN, HNN results (testing) with desired for 54 , kk and 6k

for six storey shear building 
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K3(LeNN with 3rd order)

K3(HNN with 3rd order)

K3(Des)

Typical 

Ten Data 1k (LeNN) 1k (HNN) 1k (Des) 2k (LeNN) 2k (HNN) 2k (Des) 
3k (LeNN) 3k (HNN) 3k (Des) 

1 7281705.604 7282873.366 7660555.6901 5091749.662 5089261.651 4957375.168 3539528.459 3541402.185 3542332.466 

2 8104009.615 8104875.152 8187505.1483 6066462.148 6067141.075 6168378.1221 3862561.586 3862561.436 3399171.0962 

3 8195975.586 8196247.486 8690426.9743 4540216.562 4540321.951 4531289.3854 2327918.52 2328029.272 2311952.3148 

4 8062392.067 8062514.448 8368465.1965 6102717.864 6103253.256 6227421.7301 2352503.563 2352574.631 2312686.0371 

5 7754437.444 7755830.379 8211143.7163 4721776.4 4720806.137 4656138.1061 2506250.835 2506681.515 2505001.274 

6 7264481.185 7263072.887 7018668.479 5871558.789 5872129.429 5838085.1802 2206694.29 2206639.986 2239242.1335 

7 7825538.897 7825685.674 7579861.3143 5442858.437 5444127.648 5500422.6486 3032317.191 3032011.805 3070351.0914 

8 8400479.015 8402258.504 7981809.4608 4985943.012 4984873.106 4935987.5975 3743572.516 3744188.781 3864442.9506 

9 7896787.265 7895762.805 7718760.0959 5635557.522 5635810.56 5643231.4508 3407731.331 3407582.893 3434780.3429 

10 7279749.18 7277968.604 6900679.9735 4615826.117 4617312.229 4744378.3018 3320756.347 3319320.697 3240258.8306 

Typical 

Ten Data 4k (LeNN) 4k (HNN) 4k (Des) 
5k (LeNN) 5k (HNN) 5k (Des) 6k (LeNN) 6k (HNN) 6k (Des) 

1 3933514.201 3933479.69 3927736.4459 3241254.953 3242415.979 3333642.5405 2562988.979 2561371.222 2533958.0294    

2 2398954.564 2398902.74 2395395.8363 3445665.722 3445501.232 3473936.5496 1826701.711 1826731.373 1842096.0351    

3 3958539.361 3958995.533 4016104.4064 2499196.676 2499157.629 2510266.2036 3347717.284 3348124.663 3377115.7287    

4 2391670.448 2391765.131 2416033.3883 2039332.931 2039209.906 2042843.2488 2785002.809 2784979.29 2680966.3543    

5 3252574.428 3252524.877 3233993.5162 1679590.263 1679863.346 1701501.0238 2356833.659 2356101.71 2381269.3615    

6 2499213.546 2499244.339 2486312.0442 2520703.931 2520820.591 2515697.6617 3223676.972 3223543.746 3383837.8606    

7 3382507.364 3382265.099 3318741.1448 2672972.389 2672980.792 2671218.2514 2666212.46 2666891.145 2811827.6405    

8 2212209.103 2212189.412 2209159.2479 3024918.314 3025327.75 3025774.1918 2425152.55 2424474.889 2403891.4185    

9 4015817.54 4015821.66 3733363.9972 1665849.608 1665916.812 1665925.2982 3154115.642 3154314.578 3179394.8414    

10 3754633.14 3754783.794 3897418.4529 2878838.706 2877757.334 2823192.3862 2667374.57 2669492.059 2565247.0049    
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7.5 Conclusion 
 

A novel method is presented here to estimate stiffness parameters of multistorey shear 

building using single layer multi-input and multi-output Functional Link neural network. 

Training with multilayer neural network (MNN) is also done and it is noted that ChNN, 

LeNN and HNN takes less computation time and gives good result as compared to MNN. 

The models need to have the knowledge of the initial design parameters namely stiffness 

and mass of the said problem and using these initial design parameters, frequencies for a 

structure may be computed by numerical simulation. These frequencies are used as inputs 

to train the FLNN model. Present structural parameter values of the shear structure may be 

identified by using the proposed FLNN. The converged FLNN model will have the 

capability to estimate the present stiffness parameter values for each floor. It may be seen 

that the present FLNN model are easy to implement with low computational complexity 

and are also more efficient than MNN. Various example problems of two, three, five, six, 

eight and ten storey shear buildings have been analyzed to show the efficacy and 

usefulness of the present FLNN model. Testing is also been done for three and six storey 

shear buildings with the stored converged weights of FLNN which validate the novelty of 

the present methods. 
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Chapter 8 

Functional Link Neural Network Based 

System Identification through            

Seismic Data 
 

In this Chapter application of Functional Link Neural Network (FLNN) for structural 

response prediction of tall buildings due to seismic loads have been proposed. The ground 

acceleration data is taken as input and structural responses of different floors of multi-

storey shear buildings are considered as output. It is worth mentioning that handling of 

large earthquake data has become a great challenge in the design of tall structures viz. that 

of shear buildings. As such here, functional expansion block in FLNN has been used along 

with efficient Chebyshev and Legendre polynomials. Training is done with one earthquake 

data and testing is done with different intensities of other earthquake data and it is seen 

that FLNN can very well predict the structural response of different floors of multi-storey 

shear building subject to earthquake data. Results of FLNN are compared with Multilayer 

Neural Network (MNN) and it is found that the FLNN gives better accuracy and takes less 

computation time compared to MNN which shows the computational efficiency of FLNN 

over MNN. Numerical examples of two, five and ten storey buildings are considered and 

corresponding results are presented in the form of Tables and Plots. 

 

8.1 Modelling For Response Analysis for Multi-Degree of 

Freedom System 
 

When a multi-storey building is subjected to base excitation, then the governing equation 

of motion is written as 

 

                                      aMxKxCxM                                                    (8.1) 

where  M  is a nn   mass matrix,  K  is a nn   stiffness matrix of the structure and 

 C  represents nn  damping  matrix and    is the influence co-efficient vector. Here 

}{x
 is the displacement relative to the ground, }{x

 is the response acceleration, }{x
 is the 

response velocity and a  is the earthquake ground acceleration. The global mass, stiffness 

and damping matrices are denoted as  M ,  K  and  C respectively and are given as 

below: 
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Eq. (8.1) is a set of n-coupled ordinary differential equations. Modal analysis technique 

can be used to solve Eq. (8.1) if the system is linear with proportional damping. The modal 

analysis technique becomes more efficient for earthquake response analysis. Hence Eq. 

(8.1) can be reduced to n-modal equations as in Chakraverty et al. [89] 

                        rrrrrrr axωxωξx   22 r =1,2,…,n                                (8.2) 

where n (N) is the number of significant modes, rξ  is the damping ratio and the modal 

coordinate rx  is related to the displacement of the i-th mass as  

                                            
r

n

r
iri xv 




1


                                                            
(8.3) 

where ir  is the i-th component of the r-th mode-shape vector and r  is the modal 

participation factor. Eq. (8.3) represents the equation of motion of n SDOF system and the 

response is obtained from Duhamel integral. The Duhamel integral is written as 

Chakraverty [200] 

 

                  
       dττtτtτax rrr

t

Dr

r
r   




sinexp

0


                            

(8.4) 
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Here, 21 iiDi
  , where Di , r and r  are damped frequency, free vibration 

frequency and damping ratio respectively. The time history response of the i-th mass is 

then determined from Eq. (8.2) as 

                                           txtxtv iii 2211                                                (8.5) 

The floor responses of multi-storey shear structures viz. displacement is obtained from the 

above Eq. (8.5). The FLNN architecture is constructed with Chebyshev and Legendre 

polynomials, considering the ground acceleration data as input and the storey response as 

output, obtained from the above solution for each time step. 

 

8.2 Functional Link Neural Network 
 

Functional Link Neural Network is a single layer neural network in which the hidden layer 

is removed and the input vectors are expanded to higher dimensional vectors by some 

orthogonal polynomials. The FLNN model consists of mainly two parts, one is functional 

expansion part and the other is learning part. Due to the absence of hidden layer, FLNN is 

computationally more efficient and faster than MNN. Let us consider i input vector 

denoted as  TiyyyY ,,, 21  . Thus, the enhanced input vector can be expressed as 

 YUYT  , where       YuYuYuU N,,, 21  . Here  N
kU 1  

are set of suitable functions. 

These functions may be considered as set of orthogonal polynomials viz. Chebyshev and 

Legendre polynomials. Structure of single layer FLNN model with single input-output is 

considered here and their learning algorithms have been discussed below. The single 

input-output FLNN architecture is shown in Figure 8.1. 

 

8.2.1 Learning Algorithm of Functional Link Neural Network (FLNN) 
 

In FLNN, the weights are updated to minimize a given cost function. Feed forward and 

error back propagation algorithm is used for learning. Error back propagation algorithm 

has been used to update the weights of FLNN. Inputs ii aY   are the ground acceleration 

and outputs kk xO   are the structural responses of each floor of a multi-storey building. 

The linear sum kS
 can be calculated as 

                                

 

nodesinputofnumber

1



 


ik

YUwS k

N

k
kkk 

                                                     
(8.6)  

where kw  are the weights, k  are the bias and  YUk  are the expanded input vectors.   
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These  YUk are considered here as Chebyshev and Legendre polynomials.  

The net output is given as 

                                                 
 kk SfO 

 
 

As the earthquake data are both positive and negative, therefore bipolar sigmoidal function 

has been used as the activation function. The bipolar activation function is defined as 

                                             

 
 k

k

S

S
f

exp1

exp1




  

Cost function used for minimization of error is defined as                                                                                                                 

                                     
  ikeOdE kkk  22

2

1

2

1

                                                 
(8.7) 

where kd  is the desired output, kO  is the target output and ke  is the error value. The 

error value is computed to obtain the desired accuracy. Weights are updated as follows: 

                                          
    kkk wOldwNeww 

                                                   (8.8) 

where change in weights are calculated as 

                                 
     YUOOd

w

E
w kkkk

k
k

2
1












 

                       

(8.9) 

where   is the learning parameter. The same procedure to update the bias k .  

 

8.2.2 Structure of Chebyshev Neural Network 
 

The structure of ChNN comprises of one input node, a functional expansion block 

consisting of Chebyshev polynomials and one output node. Each input vector is expanded 

to several terms of Chebyshev orthogonal polynomials so that they may be viewed as a 

new input vector in the functional expansion part. Chebyshev polynomial of k
th 

order is 

denoted by  yTk , where -1 <y< 1. First five Chebyshev polynomials may be written as  

 
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Higher order Chebyshev polynomials may be generated by the well known recursive 

formula 

      yTyxTyT kkk 11 2                (8.10)
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8.2.3 Structure of Legendre Neural Network  
      

 

In Legendre neural network (LeNN), the suitable functions are taken as Legendre 

orthogonal polynomials in the expansion block. In functional expansion, each input is 

expanded to several terms using Legendre polynomials to have a new input vector. Here 

we have considered a single layer single input-output Legendre Neural Network (LeNN) 

model to find structural response. The Legendre polynomial of k
th

 order is denoted by 

 yLk , where -1 <y< 1. As such first five Legendre polynomials may be written as  

 
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Legendre polynomials of higher order may be obtained by the well known recursive rule 

 

               
        yLkyLyk

k
yL kkk 11 12

1

1
 


  

           (8.11)
 

 
 

8.3 Results and Discussions 
 

8.3.1 Training Case 
 

The novel aim of the proposed method is to estimate the structural response of multi-

degree freedom system from earthquake ground acceleration data. FLNN is trained and 

tested with different order polynomials. On the other hand, MNN is also trained and tested 

Figure 8.1 Single Layer Functional Link Neural Network 
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with different number of nodes in the hidden layer. Training is done with random weights 

and converged weights are stored for FLNN and MNN. With these stored weights testing 

has been done in order to get an accuracy of 0.001. For present investigation, examples of 

two, five and ten storey shear buildings have been considered for training with Chamoli 

earthquake data and structural response for ninth floor is predicted (testing) subject to 

different intensities of Uttarkashi earthquake data. 

 

Example 1. Two storey shear buildings: 

In this case, Chamoli earthquake data at Barkot (NE direction) has been considered for 

training with peak acceleration value as 19.58 cm/sec
2
. A 2DOF system with natural 

frequency parameters 19.544 and 51.167 and damping ratio as 5% critical in both natural 

modes has been taken. Two separate models for two floors are used in training with a total 

time range of 0-10 secs. (500 data set). Responses of first and second storey are obtained 

numerically by solving the Duhamel integral that is Eq. (8.4) considering the ground 

acceleration data of Chamoli earthquake at Barkot (NE). First the training is done by 

Chebyshev neural network taking earthquake ground acceleration as input and structural 

response as output with random weights. After training by ChNN the converged weights 

are stored. Using the stored converged weights of ChNN, Legendre neural network is 

trained for different orders of polynomials. LeNN is also trained with random weights. It 

is found that LeNN trained with stored converged weights gives better accuracy and takes 

less computation time than trained with random weights. It is also seen that as we increase 

the order of these two orthogonal polynomials we get better accuracy. The training is also 

done with MNN. Out of 500 data set used for training, results for 10 typical data set are 

shown in all the tables below. Comparison of desired, ChNN with different order 

polynomials and MNN values for 10 data set for first floor of the two storey is shown in 

Table 8.1(a). Table 8.1(b) shows the results for desired, ChNN with different order 

polynomials and MNN values for 10 data set for second floor of the two storey. Tables 

8.1(a) and 8.1(b) show how increase in the order of polynomials shows better accuracy for 

this case. The result comparison between desired and LeNN with stored converged 

weights and random weights (for first floor) has been incorporated in Table 8.1(c). 

Similarly for second floor the result is given in Table 8.1(d). Tables 8.1(c) and 8.1(d) show 

how learning with converged weights take less computation time and better accuracy than 

learning with random weights. The CPU time for ChNN is 86.30 secs.. LeNN with 
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converged weights is 75.49 secs., random weights is 78.69 secs. and MNN is 284.20 secs. 

It is found that ChNN and LeNN take less computation time than MNN. 

 

 

Table 8.1(a): Comparison between ChNN (with different order polynomial) and MNN for 

first storey 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.1(b): Comparison between ChNN (with different order polynomial) and MNN for 

second storey 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Set 
Desired 

 (cm/sec2) 

T2(y) 

(cm/sec2) 

T3(y) 

(cm/sec2) 

T4(y) 

(cm/sec2) 

T5(y) 

(cm/sec2) 

MNN 

(cm/sec2) 

1 -0.00044194 -0.00049865 -0.00052216 -0.00044154 -0.00044113 -0.00042112 

2 -0.0018653 -0.0018279 -0.0017278 -0.0018951 -0.0018643 -0.0017858 

3 -0.0013531 -0.0014483 -0.0013881 -0.0013437 -0.0013564 -0.0013726 

4 -0.00055874 -0.00063637 -0.00065088 -0.00055988 -0.00055866 -0.00054473 

5 -0.00021603 -0.00022461 -0.00026186 -0.00021852 -0.00021655 -0.00019099 

6 0.00019361 0.00028091 0.0002343 0.00019321 0.00019369 0.00018613 

7 0.0017298 0.0017846 0.0018271 0.0017799 0.0017229 0.0017509 

8 0.0026065 0.0022142 0.0022834 0.0026496 0.0026015 0.0025816 

9 0.0016876 0.0017565 0.0017965 0.0016834 0.0016895 0.0016834 

10 0.00030355 0.00041458 0.00036915 0.00030257 0.00030388 0.00027847 

Data Set 
Desired 

(cm/sec2) 

T2(y) 

(cm/sec2) 

T3(y) 

(cm/sec2) 

T4(y) 

(cm/sec2) 

T5(y) 

(cm/sec2) 

MNN 

(cm/sec2) 

1 -0.00048403 -0.00054613 -0.00057188 -0.00048073 -0.00048486 -0.00046126 

2 -0.002043 -0.0020019 -0.0018923 -0.002055 -0.002046 -0.0019557 

3 -0.001482 -0.0015862 -0.0015203 -0.001417 -0.001494 -0.0015034 

4 -0.00061195 -0.00069697 -0.00071286 -0.00061938 -0.00061195 -0.00059664 

5 -0.00023661 -0.000246 -0.0002868 -0.00023838 -0.00023698 -0.00020914 

6 0.00021205 0.00030766 0.00025662 0.00021278 0.00021288 0.00020392 

7 0.0018945 0.0019546 0.0020011 0.0018493 0.0018998 0.0019178 

8 0.0028547 0.002425 0.0025008 0.0028829 0.0028516 0.0028275 

9 0.0018483 0.0019238 0.0019676 0.0018991 0.0018413 0.0018436 

10 0.00033246 0.00045406 0.0004043 0.00033662 0.00033244 0.00030502 
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Table 8.1(c): Comparison between desired and LeNN with stored converged weights and 

random weights for first storey 

 

Data Set 

Desired 

(cm/sec2) With converged weights With Random weights 

  

L2(y)  

(cm/sec2) 

L3(y) 

 (cm/sec2) 

L4(y)  

(cm/sec2) 

L5(y)  

(cm/sec2) 

L2(y)  

(cm/sec2) 

L3(y)  

(cm/sec2) 

L4(y)  

(cm/sec2) 

L5(y)  

(cm/sec2) 

1 -0.00044194 -0.00044865 -0.00044827 -0.00044145 -0.00044198 -0.00049867 -0.00052218 -0.00044156 -0.00044117 

2 -0.0018653 -0.0018641 -0.0018576 -0.0018641 -0.0018651 -0.0018279 -0.0017279 -0.0018955 -0.0018648 

3 -0.0013531 -0.0013852 -0.0013279 -0.0013497 -0.0013533 -0.0014485 -0.0013883 -0.0013439 -0.0013566 

4 -0.00055874 -0.00055988 -0.00055831 -0.00055805 -0.00055877 -0.00063639 -0.00065085 -0.00055984 -0.00055869 

5 -0.00021603 -0.00021705 -0.00021924 -0.00021655 -0.00021607 -0.00022463 -0.00026188 -0.00021855 -0.00021654 

6 0.00019361 0.00019332 0.00019745 0.00019393 0.00019369 0.00028093 0.0002345 0.00019326 0.00019366 

7 0.0017298 0.0017253 0.0017289 0.0017223 0.0017292 0.0017848 0.0018273 0.0017797 0.0017227 

8 0.0026065 0.0026387 0.0026683 0.0026002 0.0026064 0.0022144 0.0022835 0.0026498 0.0026017 

9 0.0016876 0.0016672 0.0016871 0.0016863 0.0016878 0.0017567 0.0017967 0.0016838 0.0016893 

10 0.00030355 0.00030086 0.00030769 0.00030326 0.00030355 0.00041459 0.00036917 0.00030259 0.00030385 

 

Table 8.1(d): Comparison between desired and LeNN with stored converged weights and 

random weights for second storey 

 

 

Example 2. Five storey shear buildings: 

Same earthquake data as mentioned in example 1 has been taken in this example. Again 

damping is assumed as 5% critical for this case. The training is done for 500 data set with 

a total time range of 0-10 secs.. ChNN and LeNN are trained with different order 

polynomials. LeNN is trained with the stored converged weights of ChNN. MNN is 

trained with15 hidden nodes in the hidden layer. Comparison between desired and ChNN 

of order 5 for fourth floor has been plotted in Figure 8.3(a). Figure 8.3(b) shows 

Data Set 

Desired 

(cm/sec2) With converged weights With Random weights 

  

L2(y) 

(cm/sec2) 

L3(y) 

(cm/sec2) 

L4(y) 

(cm/sec2) 

L5(y) 

(cm/sec2) 

L2(y) 

(cm/sec2) 

L3(y) 

(cm/sec2) 

L4(y) 

(cm/sec2) 

L5(y) 

(cm/sec2) 

1 -0.00048403 -0.00048613 -0.00048572 -0.00048463 -0.00048401 -0.00054615 -0.00057185 -0.00048075 -0.00048488 

2 -0.002043 -0.002019 -0.002054 -0.002056 -0.002048 -0.0020016 -0.0018925 -0.002057 -0.002044 

3 -0.001482 -0.001486 -0.001484 -0.001488 -0.001484 -0.0015865 -0.0015205 -0.001419 -0.001498 

4 -0.00061195 -0.00061697 -0.00061048 -0.00061157 -0.00061197 -0.00069699 -0.00071289 -0.00061934 -0.00061197 

5 -0.00023661 -0.0002366 -0.00023697 -0.00023664 -0.00023665 -0.000247 -0.0002865 -0.00023835 -0.00023695 

6 0.00021205 0.00021766 0.00021211 0.00021253 0.00021203 0.00030768 0.00025665 0.00021276 0.00021285 

7 0.0018945 0.0018546 0.0018702 0.0018901 0.0018943 0.0019548 0.0020014 0.0018497 0.0018996 

8 0.0028547 0.002825 0.0028843 0.0028545 0.0028548 0.002427 0.0025009 0.0028826 0.0028518 

9 0.0018483 0.0018238 0.0018362 0.0018498 0.0018482 0.0019239 0.0019677 0.0018993 0.0018415 

10 0.00033246 0.00033406 0.00033175 0.00033273 0.00033248 0.00045408 0.0004048 0.00033665 0.00033245 
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comparison between desired and LeNN (of order 5) for fourth floor. Similarly, comparison 

between desired and MNN for fourth floor has been shown in Figure 8.3(c). Comparison 

between desired and ChNN (of order 5) for fifth floor is shown Figure 8.3(d). The results 

of desired and LeNN (with order 5) for fifth floor is plotted in Figure 8.3(e). Finally 

Figure 8.3(f) depicts result comparison between desired and MNN for fifth floor. The CPU 

time for this case for ChNN, LeNN and MNN are 3659.84 secs., 3002.36 secs. and 

256393.21 secs. respectively.  

 

 

Figure 8.3(a): Comparison between desired and ChNN results for fourth floor 

 

 

Figure 8.3(b): Comparison between desired and LeNN results for fourth floor 
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Figure 8.3(c): Comparison between desired and MNN results for fourth floor 

  

Figure 8.3(d): Comparison between desired and ChNN results for fifth floor 

 

 
 

Figure 8.3(e): Comparison between desired and LeNN results for fifth floor 
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Figure 8.3(f): Comparison between desired and MNN results for fifth floor 

 

Example 3. Ten storey shear buildings: 

 In this case, the damping ratio is again assumed as 5% critical for all natural modes for 

the entire storey. In the similar manner using same earthquake data as in cases 1 and 2, the 

training has been done for ten storey building for 500 data set with a total time of 0-10 

secs.. Here ChNN and LeNN of order 5 have been considered and MNN has been trained 

with 15 hidden nodes. Comparison between desired, ChNN (of order 5), LeNN (with order 

5) and MNN for eighth floor has been plotted separately in Figures 8.4(a)-8.4(c). Also 

results for tenth floor from ChNN, LeNN and MNN are shown separately in Figures 

8.4(d)-8.4(f) respectively. The CPU time for this case for ChNN, LeNN and MNN are 

4412.06 secs, 3012.16 secs and 328225.19 secs respectively. 

 

 
 

Figure 8.4(a): Comparison between desired and ChNN results for eighth floor 
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Figure 8.4(b): Comparison between desired and LeNN results for eighth floor 

 

 
 

Figure 8.4(c): Comparison between desired and MNN results for eighth floor 

 
 

Figure 8.4(d): Comparison between desired and ChNN results for tenth floor 
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Figure 8.4(e): Comparison between desired and LeNN results for tenth floor 

 

 
 

Figure 8.4(f): Comparison between desired and MNN results for tenth floor 

 

8.3.2 Testing Case 
 

Finally testing is done with various intensities (80% and 120%) of Uttarkashi earthquake 

data. First training with FLNN and MNN is done with Chamoli earthquake data for ten 

storey shear buildings and weights were stored. These stored converged weights are then 

used to predict storey response for 80% and 120% of the Uttarkashi earthquake data. 

Training is done with 500 data set with a time range of 0-10 secs but testing is done with 

100 data set with a total time of 0-2 secs. Responses of ninth floor are found using the 

stored weights of FLNN and MNN. For testing orthogonal polynomials of order 5 are 

considered for FLNN and 10 hidden nodes are taken for MNN. The peak response values 
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(testing values) from desired, ChNN, LeNN and MNN for 100 data set with different 

intensities of Uttarkashi earthquake are given in Table 8.2. Result comparisons among 

desired, ChNN, LeNN and MNN for ninth floor with 80% intensity of Uttarkashi 

earthquake for 100 data set (testing data) with time 0-2 secs are shown in Figures 8.5(a)-

8.5(c) respectively. Similarly the results of desired, ChNN, LeNN and MNN for ninth 

floor with 120 % intensity of Uttarkashi earthquake for 100 data set (testing data) with 

time 0-2 secs. are plotted separately in Figures 8.6(a)-8.6(c). From these figures (Figures 

8.5(a)-8.5(c) and Figures 8.6(a)-8.6(c)) and Table 8.2 one may conclude that FLNN can 

very well be used for response prediction of multistorey shear buildings subject to various 

intensities of seismic loads. It is also seen that computation is faster in FLNN as compared 

to MNN and it can give better accuracy even with the absence of hidden layer. 

 

Table 8.2: Comparison among the desired, ChNN, LeNN and MNN peak response values 

(testing values) 

 

 

 

 

 

 

 

 

 

Figure 8.5(a): Comparison between desired and ChNN testing values (80%) for ninth floor 
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80% 0.0031215 0.0031213 0.0031225 0.003015 

120% 0.004687 0.004682 0.004683 0.004685 
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Figure 8.5(b): Comparison between desired and LeNN testing values (80%) for ninth floor 

 

Figure 8.5(c): Comparison between desired and MNN testing values (80%) for ninth floor 
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Figure 8.6(b): Comparison between desired and LeNN testing values (120%) for ninth 

floor 

 

Figure 8.6(c): Comparison between desired and MNN testing values (120%) for ninth 

floor 
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Present paper estimates the structural response of multi storey shear buildings subject to 

seismic loads using FLNN. Training is done with ChNN, LeNN and MNN taking the input 

as ground acceleration and output as structural response of each floor. ChNN is trained 

with random weights for different order of polynomials and it is seen that for higher order 

of polynomial we get better accuracy. LeNN is trained for different order of polynomials 
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way is by considering the random weights.  After the training is complete it is found that 

LeNN with stored converged weights gives better accuracy than random weights. Training 

is done with Chamoli earthquake data but for testing different intensities of Uttarkashi 

earthquake data have been used. With the stored weights (of training), testing is done to 

show the powerfulness of the present model. In testing it is found that FLNN can predict 

structural response for different storey subject to different earthquake loads. It is worth 

mentioning that FLNN gives better accuracy in all the cases and also found to be 

computationally more efficient than MNN as it takes less computation time.  
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Chapter 9 

Interval Based Functional Link Neural 

Network for System Identification via 

Response Data 
 

This Chapter presents a procedure to identify uncertain structural parameters of 

multistorey shear buildings by interval functional link neural network. The structural 

parameters are identified using response of the structure with both ambient and forced 

vibration. Here interval functional link neural network have been used to train interval 

data. The polynomials used in the functional link are Chebyshev and Legendre 

polynomials. These polynomials are taken in interval form.   

 

9.1 Analysis and Modelling with Interval Case 
 

The floor masses for this application problem are assumed to be 

     nn mmmmmm ,,...,,,, 2211  and the stiffness      nn kkkkkk ,,...,,,, 2211  are the 

structural parameters which are to be identified. It may be seen that all the mass and 

stiffness parameters are taken in interval form. The interval n-storey shear structure is 

already shown in Figure 3.1. Corresponding dynamic equation of motion for n-storey 

(supposed as n degrees of freedom) shear structure without damping may be written as  

                                         
       )(

~~~~~
tFXKXM 


                                                (9.1) 

where,    MMM ,
~

  and    KKK ,
~

  are interval mass and stiffness matrices and 

      tFtFtF ,)(
~

  is the interval horizontal displacement forcing function. 

 Let us consider that the initial conditions in interval form are given by Eq. (9.2) and (9.3) 

as 

                                   0,0)0(~ xxx  = T

nxxx )0(~)0(~)0(~
21                           (9.2) 

                                  0,0)0(~ xxx   = Tnxxx )0(~)0(~)0(~
21


  
                         (9.3) 

Solution of Eq. (9.1) for free vibration with given interval values of mass and stiffness 

gives the corresponding interval eigenvalues and eigenvectors. These are denoted 

respectively by i
~

 and   
ii

AAA ,
~

 , ni ,...,1  where  ii 
~~ 2   are the system’s 

interval natural frequency. It may be noted that the free vibration equation will be an 
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interval eigenvalue problem. The interval eigenvalue and vector are obtained then by 

considering different sets of lower and upper stiffness and mass values. Although there 

exist different methods to handle interval eigenvalue problems but here the above 

procedure has been used so that we may handle the inverse of the matrices in crisp form 

separately as lower and upper value. And that is why now we will replace the ‘~’ from all 

notations and will consider the case for lower form first and simultaneously for upper 

form. Hence the modal matrix for lower form A  may be written as 

                             
        

n
AAAA 

21
                                                     (9.4) 

Denoting the diagonal matrix made up of the eigenvalues in lower form as i , as  
nn

 , a 

new set of co-ordinates in lower form y  related to the co-ordinates  X  is introduced 

by the well known transformation    

                                              yAX                                                                         (9.5) 

If the system (9.1) is subjected to an initial velocity only then substituting Eq. (9.5) in Eq. 

(9.1) for ambient vibration, the following equation is obtained for the response in lower 

form as: 

                                            )0(
11

xADAX 
                                             (9.6) 

 whereas for the horizontal displacement in lower form we have the equation 

                                 
           tFAPyy

T1
                                                 (9.7) 

  where 

                                                  AMAP
T

                                                          (9.8)   

The final response for this case may be expressed in term of the original co-ordinates 

 X  after solving Eq. (9.7) for y and then putting in Eq. (9.5).  In the similar manner we 

can compute for the upper form. The training patterns are now trained using Interval 

Functional Link Neural Network. 

 

9.2 Interval Orthogonal Polynomials 
 

In this section we introduce an interval version of orthogonal polynomials. 

 

9.2.1 Interval Chebyshev Polynomial 
 

For each natural number m, the first four degree of interval Chebyshev polynomials may 

be written as in Patrício et al. [204] 



 

 

 

219 

 

 

 

 

  x
mm

x
mm

xT

mm
x

mm
xT

x
mm

xT

mm
xT

m

m

m

m



























































1
1,

1
13

1
1,

1
14

1
1

1,
1

1
1

1,
1

12

1
1,

1
1

1
1,

1
1

3
,3

2
,2

,1

,0

 

Interval Chebyshev polynomials of higher degree may be obtained by the well known 

recursive rule 

For each mN and jN, we can say  xT mj,  as interval Chebyshev Polynomial 

 

 9.2.2 Interval Legendre Polynomial 
 

For each natural number m, the first four degree of interval Legendre polynomials may be 

written as in Patrício et al. [204] 
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Interval Legendre polynomials of higher degree may be obtained by the well known 

recursive rule 

For each mN and jN, we may say  xL mj,  as interval Legendre Polynomial 

9.3 Learning algorithm of Interval Functional Link Neural 

Network (IFLNN) 
 

In IFLNN, the interval weights are updated in order to minimize the cost function. Here 

interval error back propagation algorithm has been used for learning and for updating the 

      xTxxTxT mjmjmj ,1,,1 2  
 

   (9.9) 

 
     xL

j

j
xLx

j

j
xL mjmjmj ,1,,1
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




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 (9.10) 
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weights of IFLNN. Inputs ii XO
~~

  are the interval frequencies and outputs JJ kO
~~

  are 

the stiffness parameters. As such, linear sum Jz~ can be calculated as 

 
 

polynomial theofdegree theisandorsinput vect ofnumber 

~~~~

1

jiJ

XUwZ j

N

j
jjJ



 




 

    (9.11)                                                
 

where jw~
 
are the interval weights, j

~
 are the interval bias and  XU j

~
 are expanded 

inputs vector in interval form. These  XU j
~

 are considered here as Chebyshev and 

Legendre polynomials in interval form. 

The net output is given as 

                                                          JJ ZfO
~~

  

Here unipolar sigmoidal function has been used as the activation function and defined as 

                                                        
 JZ

J
e

Zf ~

1

1~




  

Cost function used for minimization of error is defined as  

                                                  22 ~

2

1~~

2

1
jjj eOdE 

                                     
(9.12) 

where Jd
~

 is the desired output, JO
~

 is the target output and Je~  is the error value. The 

error value is computed to obtain the desired accuracy in interval form. Weights are 

updated as follows: 

                                          
    jjj wOldwNeww ~~~ 

                                                 
(9.13) 

where change in weights in interval form are calculated as 

                      

      XUOOd
w

E
w iJJJ

j
j

~~
1

~~
~

~
~ 2



















 

                       

(9.14) 

Here   is the learning parameter. We follow the same procedure to update the bias j
~

.The multi-input and multi-output single layer IFLNN architecture is shown in Figure 9.1, 

where  N
jjU

1

~


 are set of interval Chebyshev and Legendre orthogonal polynomials. 
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Figure 9.1: Single Layer Multi-Input and Multi-Output Interval Functional Link Neural 

Network 

 

9.4 Results and Discussion 
 

Although the developed method has been used for different storey shear structure but here 

only two and five storey shear structure has been reported to understand the methodology. 

To investigate the present method numerical experiment has been shown for two and five 

storeys lumped mass structure to identify interval stiffness parameters. One may note for 

identifying the interval stiffness parameters we need to have interval responses in the input 

nodes. In practical application due to error in measurements, we may have the response 

data in interval form. It is worth mentioning that the response may actually be obtained 

from some experiments. But here the analyses have been shown by numerical simulation 
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only. In this respect one may see that the procedure is mentioned with constant masses but 

with interval stiffness parameters. To get the set of data of interval responses and interval 

stiffness parameters, the problem has to be solved first as forward vibration problem. For 

this the initial design (structural) parameters in interval form are randomized [74] and 

training sets of initial interval stiffness parameters are generated. For the above sets of 

initial interval stiffness parameters, the set of corresponding responses in interval form are 

generated from Eq. (9.6) for ambient vibration and from Eq. (9.5) for other case (after 

solving Eq. (9.8) for yory ). In order to get the interval responses for ambient vibration 

problem, Eq. (9.6) is used and for forced vibration problem Eq. (9.5) and Eq. (9.8) are 

used. The neural network training is done till a desired accuracy is reached. We will 

identify the stiffness parameters in interval form using the interval form of the maximum 

absolute response.  The methodology has been discussed by giving the results for 

following two cases with two functional link networks. 

 

Case (i): Ambient vibration: interval response with initial condition in interval form 

Case (ii): Forced vibration: interval response with the forcing function in interval form.  

 

9.4.1 Ambient Vibration 
 

Example 1. Two storey shear buildings: 

The input layer will have the nodes as     222111 ,
~

and,
~

XXXXXX 
 
and output 

layer will have the nodes as     222111 ,
~

and,
~

kkkkkk  for two storey shear 

structure. For case (i) one problem have been solved for two storey shear structure. Here 

the system is subjected to initial condition expressed by the vector (with zero 

displacement) in interval form as    T
xx )8,10(10,8)0()0(  . The masses are 

kept constant for this problem and are taken as 1and1 2211  mmmm . The initial 

interval stiffness parameter is considered as  2000,1000
~

1 k  and  2000,1000
~

2 k  . 50 

sets of data for both responses and structural parameters are generated from these initial 

interval stiffness parameters. The values of m are taken as 2 for interval Chebyshev and 

interval Legendre Polynomials. Different degrees of Chebyshev polynomials in interval 

form are considered for training in order to achieve the desired accuracy of 0.001. But, 

here we have given the results for two degree polynomials. After training 10 trained data 

among 50 is incorporated for comparison of the desired and interval ChNN values for this 
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problem in Tables 9.1. The CPU time for ChNN is 110.34 secs. The stored converged 

weights of interval ChNN is used for testing interval LeNN. With the same desired values 

the testing has been done for interval LeNN. Comparison of results between desired and 

interval LeNN has been given in Tables 9.2. 

 

Table 9.1: Comparison of desired and interval ChNN value for ambient vibration with 

interval initial condition for 
1k , 1k  and 2k , 2k for two storey building 

 

Table 9.2: Comparison of desired and interval LeNN value for ambient vibration with 

interval initial condition for 
1k , 1k  and 2k , 2k for two storey building 

 

9.4.2 Force Vibration 
 

Example 1. Five storey shear buildings: 

The input nodes are taken as 

          55544433222111 ,
~

and,
~

,,3
~

,,
~

,,
~

XXXXXXXXXXXXXXX 
 

Data 

No. 
1k (ChNN) 1k (Des) 

1k (ChNN) 
1k (Des) 2k (ChNN) 2k (Des) 

2k (ChNN) 
2k (Des) 

1 1819.938 1860.4406 1944.1804 1949.1417 1358.0107 1347.8792 1794.3657 1716.9174 

2 1355.8861 1311.3061 1989.1416 1934.4051 1452.3857 1446.0266 1995.9252 2009.4916 

3 1362.9696 1305.5338 1921.9842 1984.3983 1092.1555 1054.2395 1282.1899 1297.8493 

4 1388.3489 1342.9363 1828.0428 1858.9388 1106.5749 1177.1075 1465.9163 1424.5225 

5 1450.3335 1477.0682 1751.8282 1785.559 1457.5081 1474.8399 1629.2183 1662.8081 

6 1434.6163 1513.3774 1671.9363 1658.1984 1360.7641 1330.829 1763.5848 1773.9571 

7 996.2312 1035.2282 1153.025 1177.6025 1811.7288 1828.204 1866.9356 1898.4861 

8 1453.1112 1398.5895 1941.8661 1852.2066 1184.0867 1110.2215 1180.4295 1118.1552 

9 1119.4539 1133.9313 1513.2829 1569.0325 1100.9639 1188.117 1916.9943 1988.4179 

10 1088.3682 1030.889 1886.814 1864.0999 1381.4564 1369.6349 1552.7181 1539.9821 

Data 

No. 
1k (LeNN) 1k (Des) 

1k (LeNN) 
1k (Des) 2k (LeNN) 2k (Des) 

2k (LeNN) 
2k (Des) 

1 1817.938 1860.4406 1944.1804 1949.1417 1357.0107 1347.8792 17964.3657 1716.9174 

2 1359.8861 1311.3061 1984.1416 1934.4051 1456.3857 1446.0266 1999.9252 2009.4916 

3 1365.9696 1305.5338 1924.9842 1984.3983 1094.1555 1054.2395 1287.1899 1297.8493 

4 1382.3489 1342.9363 1829.0428 1858.9388 1107.5749 1177.1075 1464.9163 1424.5225 

5 1457.3335 1477.0682 1755.8282 1785.559 1454.5081 1474.8399 1622.2183 1662.8081 

6 1433.6163 1513.3774 1678.9363 1658.1984 1360.7641 1330.829 1763.5848 1773.9571 

7 995.2312 1035.2282 1157.025 1177.6025 1818.7288 1828.204 1868.9356 1898.4861 

8 1458.1112 1398.5895 1841.8661 1852.2066 1180.0867 1110.2215 1188.4295 1118.1552 

9 1113.4539 1133.9313 1519.2829 1569.0325 1108.9639 1188.117 1918.9943 1988.4179 

10 1080.3682 1030.889 1884.814 1864.0999 1389.4564 1369.6349 1559.7181 1539.9821 
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and the output nodes are taken as 

          555444333222111 ,
~

 and,
~

,,
~

,,
~

,,
~

kkkkkkkkkkkkkkk  for five 

storey shear structure. In case (ii) the forcing function vector in interval form with zero 

initial condition is defined as    )t)sin((1.6001),t)80sin((1.6
~
1  tF , 

   t)sin(1.6001t),(1.680sin 
~

2 tF ,    )t)sin((3.2001),t)80sin((3.2
~
3  tF , 

   t)sin(3.2001t),80sin(3.2
~

4 tF and    )t)sin((3.2001),t)80sin((3.2
~
5  tF                                 

The masses are kept constant for this problem and are taken as 

15511  mmmm  . The initial interval stiffness parameter is considered as 

   1100,2100
~~

,1100,2200
~

521  kkk  . Here 60 data sets for both responses and 

structural parameters are generated from these initial interval stiffness parameters. The 

values of m are taken as 2 for interval Chebyshev and interval Legendre Polynomials. 

Chebyshev polynomials of fifth degree are considered to train interval ChNN so as to get 

an accuracy of 0.001. Comparison between the desired and ChNN values for 10 data 

among 60 sets of data have been plotted in Figures 9.2(a)-9.2(e). The CPU time for ChNN 

is 268.645721 secs. Again testing is done with LeNN from the converged weights of 

ChNN. Results between desired and intervals LeNN are plotted in Figures 9.3(a)-9.3(e). 

 

 

 

Figure 9.2(a): Comparison of desired and interval ChNN value for forced vibration with 

interval forcing function for 11, kk  for five storey shear building 
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Figure 9.2(b): Comparison of desired and interval ChNN value for forced vibration with 

interval forcing function for 22 , kk  for five storey shear building 

 

 
 

Figure 9.2(c): Comparison of desired and interval ChNN value for forced vibration with 

interval forcing function for 33 , kk  for five storey shear building 
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Figure 9.2(d): Comparison of desired and interval ChNN value for forced vibration with 

interval forcing function for 44 , kk  for five storey shear building 

 

 

Figure 9.2(e): Comparison of desired and interval ChNN value for forced vibration with 

interval forcing function for 55 , kk  for five storey shear building 
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Figure 9.3(a): Comparison of desired and interval LeNN value for forced vibration with 

interval forcing function for 11, kk  for five storey shear building 

 

 

Figure 9.3(b): Comparison of desired and interval LeNN value for forced vibration with 

interval forcing function for 22 , kk  for five storey shear building 
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Figure 9.3(c): Comparison of desired and interval LeNN value for forced vibration with 

interval forcing function for 33 , kk  for five storey shear building 

 

 

Figure 9.3(d): Comparison of desired and interval LeNN value for forced vibration with 

interval forcing function for 44 , kk  for five storey shear building 
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Figure 9.3(e): Comparison of desired and interval LeNN value for forced vibration with 

interval forcing function for 55 , kk  for five storey shear building 
 

9.5 Conclusion 
 

A novel method is presented here to estimate interval stiffness parameters of multistorey 

shear building using single layer multi-input and multi-output Interval Functional Link 

neural network (IFLNN). Training with ChNN is done and the converged weights are 

stored. The converged weights of interval ChNN is used for testing LeNN. The models 

need to have the knowledge of the initial design parameters namely stiffness and mass of 

the said problem and using these initial design parameters, responses for a structure in 

interval form may be computed by numerical simulation. These interval responses are 

used as inputs to train the IFLNN model. The converged IFLNN model will have the 

capability to estimate the present interval stiffness parameter values for each floor. It may 

be seen that the present IFLNN model are easy to implement with low computational 

complexity and are also more efficient than INN. Example problems of two and five 

storey shear buildings have been analyzed for free and forced vibration case to show the 

efficacy and usefulness of the IFLNN model. Testing has been done for shear buildings 

which validate the novelty of the present methods. 
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Chapter 10 

Conclusions and Future Directions 
 

 

10.1 Overall Conclusion 
 

This chapter includes overall conclusions of the present study and suggestions for future 

work. It is already mentioned that interval and fuzzy neural network model have been 

developed to solve uncertain (interval and fuzzy) coupled ordinary differential equations 

with respect to uncertain (interval and fuzzy) system identification problems for 

multistorey shear buildings. Novel techniques for estimation of structural parameters have 

been developed using single layer with multi-input and multi-output functional link neural 

network viz. ChNN, LeNN, HeNN. INN, FNN and FLNN have also been used for 

response prediction of multistorey shear buildings subject to earthquake ground motion. 

Finally, single layer functional link neural network has been extended to handle uncertain 

(interval) structural problem for identification of structural parameters. 

In the following paragraphs conclusions are drawn with respect to the various 

proposed methods and the application problems mentioned in the previous chapters. 

 

 Procedures have been developed to identify uncertain (interval and fuzzy) structural 

parameters (stiffness etc.) from frequency data for multistorey shear buildings using 

interval and fuzzy neural network models (Chapter 3). Here, initial design 

parameters namely stiffness, mass and frequency parameters of the said problem are 

known. It is assumed that after certain period of time only the stiffness is changed 

and not the mass i.e. mass remains the same. As such, equipments are available to 

get the present values of the frequencies and using these one may get the present 

parameter values by the developed mathematical model such as INN and FNN. If 

sensors are placed to capture the frequency of the floors in interval and fuzzified 

(uncertain) form then those may be fed into the proposed new INN and FNN models 

to get the present stiffness parameters. Although to train the new INN and FNN 

models, set of data are generated here by solving the governing coupled (uncertain) 

ordinary differential equations numerically beforehand. As such converged INN and 

FNN models give the present stiffness parameter values in interval/fuzzified form for 

each floor. Thus one may predict the health of the uncertain structure. These 
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methods are applied to solve different multi-storey shear buildings to show the 

efficacy of the proposed methods. 

 

 Next a forward problem for each time step is solved in (Chapter 4) for a given input 

to the system, rather than solving the inverse vibration problem. Thus, the solution 

vector is generated. Again, the initial design parameters viz. stiffness, mass and so 

the responses of the said problem are known in uncertain form. The initial values of 

the uncertain physical parameters of the system are used to obtain the interval and 

fuzzy responses. The uncertain (interval and fuzzy) responses and the corresponding 

stiffness parameters are used as the input/output in the neural net. Next, the interval 

neural network and fuzzy neural network model are trained by the proposed interval 

and fuzzy error back propagation training algorithm. After training of the model, 

physical parameters may be identified if new maximum response data is supplied as 

input to the net which are also in interval and fuzzified form. The procedures have 

been demonstrated for multi-storey shear buildings and the structural parameters are 

identified using the response of the structure subject to initial condition and 

horizontal displacement which are also in interval and fuzzified form. Hence the 

present method will also be helpful for predicting the health of the uncertain 

structure. 

 

 Methods have been proposed in (Chapter 5) by creating a trained black box in terms 

of INN and FNN containing the characteristics of the multi-storey structure and of 

the earthquake motion. INN and FNN model have been used to compute the 

structural response of multi-storey shear structures subject to ground motion data 

(interval and fuzzy) of Indian earthquakes occurred at Chamoli and Uttarkashi. The 

interval and fuzzy neural network are first trained for a real earthquake data viz. the 

ground acceleration as input and the numerically generated responses of different 

floors of multi-storey buildings as output. It may be noted that till date no model 

exists to handle positive and negative data in the INN and FNN. As such, here the 

bipolar data in [-1, 1] are converted first to unipolar form that is to [0, 1] by means of 

a novel transformation for the first time to handle the above training patterns in 

normalized form. Once the training is done, again the unipolar data are converted 

back to its bipolar form by using the inverse transformation. The trained INN and 

FNN architectures are then used to simulate and test the structural response of 
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different floors for various intensity earthquake data. As mentioned that although the 

simulation is done with numerically generated response data for particular 

earthquake (experimental) data but the idea may also be used for actual experimental 

data of the building response. So, by using the input and output as the ground motion 

and the floor response, one can train the models. Accordingly then the storey 

response may be predicted for future earthquakes using the trained model. It is found 

that the predicted responses given by INN and FNN models are good for practical 

purposes. 

 

 Powerful soft computing techniques viz. single layer interval and fuzzy neural 

network models have been used for identification of uncertain structural parameters 

(Chapter 6). If the available information and/or data are uncertain or non-

probabilistic in nature, then mathematical model needs to be developed accordingly. 

As such, INN and FNN have been developed which can handle uncertain (interval 

and fuzzified) data. Direct method for system identification of uncertain multi-storey 

shear structures from their dynamic responses have been proposed in interval and 

fuzzified form. To identify the physical parameters in interval and fuzzified form, the 

governing equations of motion are used systematically in a series (cluster) of INNs 

and FNNs. The equations of motion is first solved by the classical method to get 

responses of the consecutive stories and then the equations of motion are modified 

based on relative responses of consecutive stories in such a way that the new set of 

equations can be implemented in a cluster of INNs and FNNs. Here, single-layer 

INNs and FNNs have been used for training each cluster of the INN and FNN such 

that the converged weights give the uncertain structural parameters. Various example 

problems have been solved and related results are reported to show the reliability and 

powerfulness of the method. It is worth mentioning that the cluster of FNN may 

directly estimate the structural parameters in fuzzified form. The fuzzy estimates are 

certainly useful for design engineers by knowing the lower, centre and upper bounds 

of the structural parameters. 

 

 Solving system identification problems by classical or traditional neural network are 

sometimes time consuming. Hence a novel method has been presented in (Chapter 7) 

which can handle system identification problems with less computational time limit. 

A single layer functional link neural network with multi-input and multi-output with 
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feed forward neural network model and principle of error back propagation has been 

used to identify structural parameters. In the Functional Link neural network model, 

the hidden layer is excluded by enhancing the input patterns with the help of 

orthogonal polynomials such as Chebyshev, Legendre and Hermite. Training with 

multilayer neural network (MNN) is also done and it is noted that ChNN, LeNN and 

HNN takes less computation time and gives good result as compared to MNN. The 

models need to have the knowledge of the initial design parameters namely stiffness 

and mass of the said problem and using these initial design parameters, frequencies 

for a structure may be computed by numerical simulation. These frequencies are 

used as inputs to train the FLNN model. Present structural parameter values of the 

shear structure may be identified by using the proposed FLNN. The converged 

FLNN model will have the capability to estimate the present stiffness parameter 

values for each floor. It may be seen that the present FLNN model are easy to 

implement with low computational complexity and are also more efficient than 

MNN. Example problems of three, six and eight storey shear buildings have been 

analyzed to show the efficacy and usefulness of the present FLNN model. Testing is 

also been done for three and six storey shear buildings with the stored converged 

weights of FLNN which validate the novelty of the present methods. 

 

 Further, we have proposed Functional Link Neural Network (FLNN) for structural 

response prediction of tall buildings due to seismic loads (Chapter 8). The ground 

acceleration data has been taken as input and structural responses of different floors 

of multi-storey shear buildings have been considered as output. Here, functional 

expansion block in FLNN has been used along with efficient Chebyshev and 

Legendre polynomials. ChNN is trained with random weights for different order of 

polynomials and it is seen that for higher order of polynomial we get better accuracy. 

LeNN is trained for different order of polynomials by two ways, one way is by using 

the stored converged weights of ChNN and the other way is by considering the 

random weights. After the training is complete it is found that LeNN with stored 

converged weights gives better accuracy than random weights. Training is done with 

Chamoli earthquake data but for testing different intensities of Uttarkashi earthquake 

data have been used. With the stored weights (of training), testing is done to show 

the powerfulness of the present model. In testing it is found that FLNN can predict 

structural response for different storey subject to different earthquake loads. It is 
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worth mentioning that FLNN gives better accuracy in all the cases and also found to 

be computationally more efficient than MNN as it takes less computation time. 

 

 Finally, a new FLNN viz. interval functional link neural network (IFLNN) has been 

developed and then uncertain structural parameters of multistorey shear buildings 

have been identified in (Chapter 9). The parameters are identified here using 

response of the structure for both ambient and forced vibration. In the functional 

link, the Chebyshev and Legendre orthogonal polynomials are taken as intervals. 

 

Although exhaustive investigations have been done by developing different ANN models 

for structural system identification problems, but we do not claim that the proposed 

methods are most efficient. As such, there may be some gaps and few limitations on the 

proposed models and we may identify various scopes of improvement. Accordingly, these 

limitations and scopes may open a new vista for future research and are discussed in the 

following section. 

 

10.2 Scope for Further Research 
 

 

 

 System identification methods to handle higher order nonlinear coupled differential 

equations using INN and FNN models. 

 

 New Single layer FLNN using other orthogonal polynomials to solve system 

identification problems. 

 

 Single layer FLNN model has been developed for linear structures which may be 

extended to nonlinear cases. 

 

 Single layer FLNN can be extended to fuzzy functional link neural network for 

solving uncertain system identification problems. 

 

 Estimation of uncertain structural parameters by cluster/series of interval and fuzzy 

neural network for SI problems with nonlinear coupled differential equations. 

 

 Development of other new techniques to predict structural response subject to 

seismic loads.  
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 One dimensional shear structure is considered here. The analysis may be extended 

for two or three dimensional problems but then the modelling to be done 

accordingly for the INN, FNN and FLNN. 

 

 INN and FNN may also be refined with uncertain weights etc. 

 

 Other structural problems may also be solved to validate the models. 

 

 Experimental data may be used (if available) for the system identification problems. 
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