12,677 research outputs found

    Can Maxwell's equations be obtained from the continuity equation?

    Full text link
    We formulate an existence theorem that states that given localized scalar and vector time-dependent sources satisfying the continuity equation, there exist two retarded fields that satisfy a set of four field equations. If the theorem is applied to the usual electromagnetic charge and current densities, the retarded fields are identified with the electric and magnetic fields and the associated field equations with Maxwell's equations. This application of the theorem suggests that charge conservation can be considered to be the fundamental assumption underlying Maxwell's equations.Comment: 14 pages. See the comment: "O. D. Jefimenko, Causal equations for electric and magnetic fields and Maxwell's equations: comment on a paper by Heras [Am. J. Phys. 76, 101 (2008)].

    Delay Equations and Radiation Damping

    Get PDF
    Starting from delay equations that model field retardation effects, we study the origin of runaway modes that appear in the solutions of the classical equations of motion involving the radiation reaction force. When retardation effects are small, we argue that the physically significant solutions belong to the so-called slow manifold of the system and we identify this invariant manifold with the attractor in the state space of the delay equation. We demonstrate via an example that when retardation effects are no longer small, the motion could exhibit bifurcation phenomena that are not contained in the local equations of motion.Comment: 15 pages, 1 figure, a paragraph added on page 5; 3 references adde

    Replacing Leads by Self-Energies Using Nonequilibrium Green's Functions

    Full text link
    An open quantum system consists of leads connected to a device of interest. Within the nonequilibrium Green's function technique, we examine the replacement of leads by self-energies in continuum calculations. Our starting point is a formulation of the problem for continuum systems by T.E. Feuchtwang. In this approach there is considerable flexibility in the choice of unperturbed Green's functions. We examine the consequences of this freedom on the treatment of leads. For any choice the leads can be replaced by coupling self-energies which are simple functions of energy. We find that the retarded self-energy depends on the details of the choice of unperturbed Green's function, and can take any value. However, the nonequilibrum self-energy or scattering function can be taken to be independent of this choice. Expressed in terms of these self-energies, nonequilibrium transport calculations take a particularly simple form.Comment: 14 pages, 0 figure

    Quantum-classical crossover in electrodynamics

    Get PDF
    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-see can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.Comment: new references added, few sign errors fixed, to appear in Physical Review

    Controversies in the History of the Radiation Reaction problem in General Relativity

    Get PDF
    This paper examines the historical controversy over whether gravitationally bound systems, such as binary stars, experienced orbital damping due to the emission of gravitational radiation, focusing especially on the period of the 1950s, but also discussing the work of Einstein and Rosen in the 1930s on cylindrical gravitational waves and the later quadrupole formula controversy.Comment: 33 pages, Late
    • …
    corecore