9,517 research outputs found

    Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Get PDF
    The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA) was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    The application of distributed optical fiber sensors (BOTDA) to sinkhole monitoring. Review and the case of a damaging sinkhole in the Ebro Valley evaporite karst (NE Spain)

    Get PDF
    Distributed optical fiber sensors (DOFS) have been postulated as a suitable technique for long-range monitoring of sinkhole-related subsidence, and possibly for the anticipation of catastrophic collapse (early-warning systems). The strain data published in previous works refer to artificial experiments considering real and virtual cover collapse sinkholes characterized by rapid subsidence and sharp lateral deformation gradients. The influence of the subsidence mechanism (sagging, collapse, suffosion) on the capability of DOFS to satisfactorily detect active subsidence is discussed. Sagging sinkholes with poorly-defined lateral edges, low lateral deformation gradients and slow subsidence are identified as the most challenging scenario. The performance of BOTDA optical fiber for monitoring such type of sagging sinkholes is evaluated in the active Alcalá sinkhole, which affects a flood-control dike creating a high-risk and -uncertainty scenario. This sinkhole shows active subsidence in sections tens of meters long with maximum subsidence rates ranging between 5 and 35 mm/yr. The comparison of vertical displacement data measured by high-precision leveling and the strain recorded by two types of fiber optic cables shows good spatial and temporal correlation. The subsidence sections are captured in the strain profiles by: (1) troughs of negative strain (contraction) in the area affected by subsidence, with the maximum strain associated with the point of most rapid settlement; and (2) lateral ridges of positive values (extension) in the marginal zones. A subsidence acceleration phase associated with a flood is also captured by substantial increments in the strain values. In this challenging scenario, despite the reasonably good spatial and temporal correlation between the displacement and strain data, the unambiguous identification of the active subsidence area with the fiber optic data alone might be difficult. Better results could be obtained improving the monitoring system (e.g., tighter cable-ground coupling) and testing other types of sinkholes with more localized deformation zones and higher subsidence rates

    Distributed Fiber Optics Strain Measurements for Monitoring Geotechnical Structures

    Get PDF
    Recent advances in strain measurement using optical fibers provide new opportunities for monitoring the performance of geotechnical structures during and after construction. Brillouin optical time-domain reflectometry (BOTDR) is an innovative technique that allows measurement of full strain profiles using standard optical fibers. In this paper, two case studies illustrating the application of the distributed optical fiber strain sensors are presented. One is monitoring of an old masonry tunnel when a new tunnel was constructed nearby and the other is monitoring the behavior of secant piled walls for basement construction. Both sites are located in London. The advantages and limitations of this new sensor technology for monitoring geotechnical structures are discussed

    SHM with DOFS of the TMB L-9 tunnel affected by nearby building construction

    Get PDF
    Degut a la construcció d´un edifici proper, el túnel de la línia 9 es pot veure afectat en el seu estat de deformació i tensional. Per tal de fer un seguiment continuu durant tot el periode de treballs, es planteja una monitorització de la volta i llossa del túnel amb un sensor de fibra òptica distribuïda, que permetrà obtenir les deformacions al formigó amb una resolució de l´ordre de 1 centímetr

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Structural health monitoring of in-service tunnels

    Get PDF
    This work presents an overview of some of the most promising technologies for the structural health monitoring (SHM) of in-service tunnels. The common goal of damage or unusual behaviour detection is best pursued by an integrated approach based on the concurrent deployment of multiple technologies. Typically, traditional SHM systems are installed in problematic or special areas of the tunnels, giving information on conditions and helping manage maintenance. However, these methodologies often have the drawbacks of forcing the interruption of traffic for SHM system installation and monitoring only selected portions. Alternative solutions that would make it possible to keep the tunnel in normal operation and/or to analyse the entire infrastructure development through successive and continuous scanning stages, would be beneficial. In this paper, the authors will briefly review some traditional monitoring technologies for tunnels. Furthermore, the work is aimed at identifying alternative solutions, limiting or avoiding traffic interruptions

    A multisensing setup for the intelligent tire monitoring

    Get PDF
    The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes
    corecore