95,595 research outputs found

    Distributed data mining in grid computing environments

    Get PDF
    The official published version of this article can be found at the link below.The computing-intensive data mining for inherently Internet-wide distributed data, referred to as Distributed Data Mining (DDM), calls for the support of a powerful Grid with an effective scheduling framework. DDM often shares the computing paradigm of local processing and global synthesizing. It involves every phase of Data Mining (DM) processes, which makes the workflow of DDM very complex and can be modelled only by a Directed Acyclic Graph (DAG) with multiple data entries. Motivated by the need for a practical solution of the Grid scheduling problem for the DDM workflow, this paper proposes a novel two-phase scheduling framework, including External Scheduling and Internal Scheduling, on a two-level Grid architecture (InterGrid, IntraGrid). Currently a DM IntraGrid, named DMGCE (Data Mining Grid Computing Environment), has been developed with a dynamic scheduling framework for competitive DAGs in a heterogeneous computing environment. This system is implemented in an established Multi-Agent System (MAS) environment, in which the reuse of existing DM algorithms is achieved by encapsulating them into agents. Practical classification problems from oil well logging analysis are used to measure the system performance. The detailed experiment procedure and result analysis are also discussed in this paper

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    RepFlow: Minimizing Flow Completion Times with Replicated Flows in Data Centers

    Full text link
    Short TCP flows that are critical for many interactive applications in data centers are plagued by large flows and head-of-line blocking in switches. Hash-based load balancing schemes such as ECMP aggravate the matter and result in long-tailed flow completion times (FCT). Previous work on reducing FCT usually requires custom switch hardware and/or protocol changes. We propose RepFlow, a simple yet practically effective approach that replicates each short flow to reduce the completion times, without any change to switches or host kernels. With ECMP the original and replicated flows traverse distinct paths with different congestion levels, thereby reducing the probability of having long queueing delay. We develop a simple analytical model to demonstrate the potential improvement of RepFlow. Extensive NS-3 simulations and Mininet implementation show that RepFlow provides 50%--70% speedup in both mean and 99-th percentile FCT for all loads, and offers near-optimal FCT when used with DCTCP.Comment: To appear in IEEE INFOCOM 201

    Discovering learning processes using inductive miner: A case study with learning management systems (LMSs)

    Get PDF
    Resumen tomado de la publicaciĂłnDescubriendo procesos de aprendizaje aplicando Inductive Miner: un estudio de caso en Learning Management Systems (LMSs). Antecedentes: en la minerĂ­a de procesos con datos educativos se utilizan diferentes algoritmos para descubrir modelos, sobremanera el Alpha Miner, el Heuristic Miner y el Evolutionary Tree Miner. En este trabajo proponemos la implementaciĂłn de un nuevo algoritmo en datos educativos, el denominado Inductive Miner. MĂ©todo: hemos utilizado datos de interacciĂłn de 101 estudiantes universitarios en una asignatura de grado desarrollada en la plataforma Moodle 2.0. Una vez prepocesados se ha realizado la minerĂ­a de procesos sobre 21.629 eventos para descubrir los modelos que generan los diferentes algoritmos y comparar sus medidas de ajuste, precisiĂłn, simplicidad y generalizaciĂłn. Resultados: en las pruebas realizadas en nuestro conjunto de datos el algoritmo Inductive Miner es el que obtiene mejores resultados, especialmente para el valor de ajuste, criterio de mayor relevancia en lo que respecta al descubrimiento de modelos. Además, cuando ponderamos con pesos las diferentes mĂ©tricas seguimos obteniendo la mejor medida general con el Inductive Miner. Conclusiones: la implementaciĂłn de Inductive Miner en datos educativos es una nueva aplicaciĂłn que, además de obtener mejores resultados que otros algoritmos con nuestro conjunto de datos, proporciona modelos válidos e interpretables en tĂ©rminos educativos.Universidad de Oviedo. Biblioteca de PsicologĂ­a; Plaza Feijoo, s/n.; 33003 Oviedo; Tel. +34985104146; Fax +34985104126; [email protected]

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application
    • …
    corecore