3,785 research outputs found

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Knowledge-Driven Semantic Segmentation for Waterway Scene Perception

    Get PDF
    Semantic segmentation as one of the most popular scene perception techniques has been studied for autonomous vehicles. However, deep learning-based solutions rely on the volume and quality of data and knowledge from specific scene might not be incorporated. A novel knowledge-driven semantic segmentation method is proposed for waterway scene perception. Based on the knowledge that water is irregular and dynamically changing, a Life Time of Feature (LToF) detector is designed to distinguish water region from surrounding scene. Using a Bayesian framework, the detector as the likelihood function is combined with U-Net based semantic segmentation to achieve an optimized solution. Finally, two public datasets and typical semantic segmentation networks, FlowNet, DeepLab and DVSNet are selected to evaluate the proposed method. Also, the sensitivity of these methods and ours to dataset is discussed

    A comparison of two Monte Carlo algorithms for 3D vehicle trajectory reconstruction in roundabouts

    Get PDF
    Visual vehicular trajectory analysis and reconstruction represent two relevant tasks both for safety and capacity concerns in road transportation. Especially in the presence of roundabouts, the perspective effects on vehicles projection on the image plane can be overcome by reconstructing their 3D positions with a 3D tracking algorithm. In this paper we compare two different Monte Carlo approaches to 3D model-based tracking: the Viterbi algorithm and the Particle Smoother. We tested the algorithms on a simulated dataset and on real data collected in one working roundabout with two different setups (single and multiple cameras). The Viterbi algorithm estimates the Maximum A-Posteriori solution from a sample-based state discretization, but, thanks to its continuous state representation, the Particle Smoother overcomes the Viterbi algorithm showing better performance and accuracy

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac
    corecore