
Pattern Recognition Letters 51 (2014) 79–85

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

A comparison of two Monte Carlo algorithms for 3D vehicle trajectory

reconstruction in roundabouts ✩

Andrea Romanoni a,∗, Lorenzo Mussone b, Davide Rizzi a, Matteo Matteucci a

a Politecnico di Milano, DEIB, Via Ponzio, 34/5, Milano, 20133, Italy
b Politecnico di Milano, ABC, Via Bonardi, 9, 20133, Milano, Italy

a r t i c l e i n f o

Article history:

Received 14 March 2014

Available online xxx

Keywords:

Vehicular trajectory

3D visual tracking

Monte Carlo smoothing

Model-based tracking

a b s t r a c t

Visual vehicular trajectory analysis and reconstruction represent two relevant tasks both for safety and

capacity concerns in road transportation. Especially in the presence of roundabouts, the perspective effects

on vehicles projection on the image plane can be overcome by reconstructing their 3D positions with a

3D tracking algorithm. In this paper we compare two different Monte Carlo approaches to 3D model-based

tracking: the Viterbi algorithm and the Particle Smoother. We tested the algorithms on a simulated dataset and

on real data collected in one working roundabout with two different setups (single and multiple cameras). The

Viterbi algorithm estimates the Maximum A-Posteriori solution from a sample-based state discretization, but,

thanks to its continuous state representation, the Particle Smoother overcomes the Viterbi algorithm showing

better performance and accuracy.

© 2014 Elsevier B.V. All rights reserved.

1

t

m

i

a

c

c

t

a

o

m

[

t

v

a

e

[

s

u

a

(a) Vehicle. (b) Blob.

Fig. 1. Blob extracted through background subtraction.

a

p

p

t

r

h

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano
. Introduction

Vehicular monitoring is one of the most relevant research topics in

he intelligent transportation systems field. A system capable of esti-

ating vehicle position and its dynamics on the road is important, for

nstance, to detect infractions as well as road accidents [1], and it could

lso provide useful information about traffic distribution [2]. In the

ontext of vehicular monitoring, roundabouts represent a uniquely

hallenging scenario for their complexity, both in terms of vehicular

rajectories (which are different between vehicles of the same class

nd very different between vehicles of different classes) and in terms

f simultaneous occlusions of more vehicles, especially occurring in

ulti-lanes circulatory roadways and with heavy vehicles.

One approach to traffic monitoring is the visual vehicle tracking

3], i.e., the process of recognizing moving objects and estimating

heir trajectory from a video sequence. Most of the existing visual

ehicle tracking systems propose a 2D approach (2D tracking here-

fter): these systems identify moving vehicles on the image plane,

.g., by identifying their blobs (see Fig. 1) via background subtraction

4], and they track their trajectories on this plane [5,2]. Although, in

ome applications, this type of estimate might be sufficient to fully

nderstand the vehicle behavior, in many cases, especially in round-

bout intersections, we need to estimate vehicle trajectories with high
✩ This paper has been recommended for acceptance by R. Davies.
∗ Corresponding author. Tel.: +39 02 2399 4031.

E-mail address: andrea.romanoni@polimi.it (A. Romanoni).

v

o

a

a

t

ttp://dx.doi.org/10.1016/j.patrec.2014.09.003

167-8655/© 2014 Elsevier B.V. All rights reserved.
ccuracy and with respect to a 3D world reference system; the latter

rocess is called 3D tracking.

The straightforward approach to reconstruct a 3D trajectory

rojects the 2D vehicle positions — approximately the centroids of

he blobs estimated with 2D tracking — from the image plane on the

oad plane as in Fig. 2, where Cwrong is the intersection of the centroid

iewing ray with the road ground plane, see [6,2]. The main drawbacks

f this approach are the high sensitivity to perspective deformations

nd the effect of the unknown height of vehicles, especially when they

re heavy trucks. An example of that latter is reported in Fig. 2 where

he estimated center Cwrong is far from the real vehicle center C.

https://core.ac.uk/display/55248182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.patrec.2014.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.09.003&domain=pdf
mailto:andrea.romanoni@polimi.it
http://dx.doi.org/10.1016/j.patrec.2014.09.003

80 A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85

d

t

a

b

v

t

e

t

i

t

o

l

t

l

t

3

i

p

p

t

b

h

t

f

c

t

t

s

t

b

t

t

a

[

s

b

f

a

p

t

a

v

o

b

v

a

To overcome these issues, some researchers have proposed to use

3D model-based tracking algorithms and this is the approach we focus

on in this paper. This class of algorithms gives a trajectory estimation

in 3D world coordinates by representing the tracked object with one

or more models, for instance in our implementation we have used a

set of parallelepipeds with variable dimensions and we infer (com-

putationally) which model should be used for the current vehicle.

The two most common approaches to 3D model-based vehicle

tracking are named edge-based and region-based, according to the

features used to recognize and track a vehicle. The latter, i.e., the

region-based, has shown more flexibility and robustness [7] and for

this reason we focus our comparison on this class of algorithms. The

most suitable way to deal with region-based 3D tracking is by means

of a Monte Carlo estimation [8,9], since it natively applies the concept

of hypotheses scoring, very useful when comparing the 3D vehicle

model back-projected on the image plane against the region occupied

by the vehicle. Moreover Monte Carlo estimation does not rely on the

strong Gaussian and unimodal assumptions of the common Kalman

estimation.

An abridged version of this paper was presented in the confer-

ence paper [10]. Here we propose an analysis of two Monte Carlo

approaches to region-based 3D tracking by comparing a Viterbi algo-

rithm and a Particle Smoother. The former deals with a discrete rep-

resentation of the state to provide the Maximum A-Posteriori (MAP)

estimate, while the latter approximates the MAP solution through its

sample-based distribution; at the end of our analysis we show that,

thanks to its continuous state representation, the Particle Smoother

gives better results and with a lower computational cost. While in

[10] we have focused on the relevance of 3D tracking with respect

to the 2D one in a roundabout setting, in this paper we focus on

the comparison of two 3D tracking algorithms, and we discuss on

the reasons why a Monte Carlo approach fits well the region-based

3D tracking.

In Section 2, we present a literature overview on 3D model-based

tracking algorithms. In Section 3 we present a (Bayesian smooth-

ing) formalization of the tracking and smoothing problem. Then, in

Section 4 we describe the two Monte Carlo tracking algorithms and

how they implement the Bayesian smoothing. In the same section we

explain also the vehicle model management, the algorithm function-

ing and how the likelihood is computed in the single and multiple

camera cases. In Section 5 we illustrate the experimental results for

the two tracking algorithms on simulated and real scenarios, while

Section 6 concludes the paper.

2. 3D model-based tracking

The visual tracking process aims at estimating the state of an object

from a sequence of images. The classical computer vision tracking in-

volves the estimation of the object position on the image plane, hence

it is named 2D tracking. A lot of approaches to 2D tracking have been

presented, see [11]; the most successful ones learn the appearance of

the object and track it leveraging on the learned description. The main
Fig. 2. 2D to 3D projection of vehicle position: the estimate Cwrong differs significantly

from the real position C.

i

C

o

w

p

b

p

d

p

t

t

M

s

ifferences among the various algorithms lie on what kind of features

hey learn and on how they model the tracked object: for instance [12]

nd [13] learn the color histogram of the object; [14] learn an eigen-

asis representation; [15] model the object with SIFT features; and a

ery recent and successful approach uses sparse coding to represent

he objects, see [16].

Another approach to object tracking is named 3D tracking and it

stimates the sequence of 3D positions [7]. Especially in the vehicle

racking scenarios this approach represents a widespread method;

ndeed in the comprehensive review of vehicular trackers [17] most of

he analyzed systems estimate the 3D position and usually by means

f a 3D model. To simplify the tracking task, all studies in 3D tracking

iterature assume that the camera calibration is known, see [18]; then,

hey usually assume the Ground Plane Constraint, i.e., a vehicle always

ies on the road plane, and tracking is executed on this plane in order

o diminish the vehicle degrees of freedom to be estimated from 6 to

. Most of these 3D tracking systems make use of an object model,

ndeed they are called model-based tracking systems. Briefly, vehicle

osition is estimated, frame-by-frame, by looking for the best model

osition and orientation which fit the object measure extracted from

he images.

The authors in [7] classify the 3D tracking algorithm in: edge-

ased, region-based, optical flow-based and feature-based. In the ve-

icle tracking literature the edge-based and region-based represent

he most common approaches. They both project the vehicle model

rom the estimated pose on the image plane, but they differ in the

hoice of the metrics adopted to evaluate the current estimate.

The edge-based algorithms compare the model projection with

he image edges; starting from the current estimate, they look for

he roto-translation that minimizes the distance between projected

egments of the model and the image edges [19,20]. This method has

he advantage of being robust to light changes and to image noise,

ut relevant failures may occur during the minimization step, since

he algorithm often stops on local minima.

The region-based algorithms compare the model projection with

he image region occupied by the tracked object, usually referred to

s blob (see Fig. 1), typically extracted by background subtraction

4] or frame-by-frame difference [21]. To estimate the vehicle pose,

ome region-based algorithms minimize a metric, as for the edge-

ased case [22], while other algorithms calculate a convenient score

or a set of hypothesized model poses [23,8]. The former approach

ims at diminishing significantly the number of local minima com-

ared to the edge-based method while the latter almost eliminates

hem.

Even if the edge-based approach is more robust to light changes

nd image noise, the region-based one is a more adequate choice for

ehicle tracking: it is flexible, since it does not require an exact model

f the vehicle; it is robust to the local minima issue; and it relies on

ackground subtraction, a well known module implemented in most

ideo surveillance systems.

Both the edge-based and the region-based approaches usually

dopt the Kalman Filter [24,23,25] to perform model-based 3D track-

ng; but an increasing number of researchers have adopted a Monte

arlo approach [8,9] where the vehicle state is represented by a set

f weighted samples.

In the region-based algorithms, the most effective way to deal

ith the comparison between blob and model projection is the com-

utation of an overlap score; with the Kalman Filter this score cannot

e used, and the common solution is to back-project on the road

lane the blob centroid, then compare it with the Kalman state pre-

iction. This process has two main limitations: by using just the back-

rojected blob centroid we neglect a lot of information coming from

he blob dimension and shape, moreover we cannot directly compute

he fitting of the 3D vehicle model to the measurement. Conversely, a

onte Carlo approach natively weights hypotheses with a likelihood

core and this can be derived from the overlap score (see Section 4.4).

A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85 81

M

t

C

a

v

u

e

w

S

u

j

t

3

w

h

a

a

p

p

p

a

t

a

e

B

w

α

p

w

a

l

p

p

t

e

I

f

i

a

p

p

c

a

o

d

t

t

F

l

e

o

a

d

a

t

u

d

D

π

i

t

w

i

p

fi

t

e

t

b

4

p

u

g

v

m

F

p

c

a

i

d

v

s

i

m

F

e

r

a

m

l

o

u

c

h

d

Table 1

Reference dimensions and variances of the models.

Lc(m) Hc(m) Wc(m) σ 2
l

σ 2
h

σ 2
w

Car 4 1.4 1.7 0.5 0.15 0.15

Truck 15.0 3 2.0 2.5 0.5 0.5

Motorcycle 2.0 1.0 0.5 0.25 0.3 0.3
oreover, the Kalman estimation relies on the strong assumption that

he underlying process is unimodal and Gaussian, while with Monte

arlo sampling we are able to estimate multi-modal distributions,

nd, it may be possible to estimate the 3D trajectory of more than one

ehicle at time, in a similar fashion to [8], although in this paper we

se a single estimator for each vehicle.

Because of the aforementioned advantages we are mostly inter-

sted in region-based Monte Carlo approaches and in this paper

e compare two estimators: the Viterbi algorithm and the Particle

moother. These estimators are Bayesian smoothers, i.e., they make

se of the entire trajectory of a single vehicle to estimate its 3D tra-

ectory; for this reason in the following, we provide an introduction

o such Bayesian formalism.

. Bayesian tracking and smoothing

We start introducing tracking as a Bayesian filtering problem, then

e extend the formalization to Bayesian smoothing. Let st be the ve-

icle state, in our case the 3D vehicle pose, and zt some measurement

t a given time t, in our case the vehicle blob.

According to the Bayesian filtering framework [26], tracking aims

t the maximization through Bayesian statistics of the so called

osterior probability, or belief, for the system state, i.e., Bel(st+1) =
(st+1|z1:t+1), where z1:t+1 = {z1, . . . , zt, zt+1}. Usually the Markov hy-

othesis is assumed, i.e., a state depends only from the previous state

nd, optionally, the applied control (in our case we omit the control

erm). The Markov assumption in the vehicular case is quite reason-

ble and very common in a tracking algorithm [27].

If z1:t+1 are the measurements up to time t + 1 and s1:t are the

stimated states up to time t we want to estimate:

el(st+1) = p(st+1|z1:t+1)

= αp(zt+1|st+1, z1:t)p(st+1|z1:t)

= αp(zt+1|st+1)p(st+1|z1:t), (1)

here p(zt+1|st+1) is the likelihood of observation zt+1 in state st+1 and

= 1/P(zt+1|z1:t) is a normalization constant. Moreover, we have:

(st+1|z1:t) =
∫

p(st+1, st|zt)dst

=
∫

p(st+1|st)Bel(st)dst, (2)

here p(st+1|st) is the state transition model and represents the prob-

bility to reach the state st+1 starting from the state st .

It is worth mentioning that the approach described previously al-

ows an iterative computation of the a-posteriori probability of the

ositions in the vehicle trajectory and each of them is obtained ex-

loiting all the measures acquired up to that time.

A different approach to Bayesian tracking is called smoothing. In

his case, if T is the number of all the positions in the trajectory, the

ntire states sequence s1:T is estimated using all the measurements.

n the case of smoothing, the vehicle trajectory is estimated at each

rame using past, present and future blobs. In this case we aim at max-

mizing the posterior probability p(s1:T |z1:T) for the whole sequence,

nd using Bayes theorem this becomes:

(s1:T |z1:T) ∝ p(z1:T |s1:T)p(s1:T). (3)

In the general case, the states and the measurements have different

robability distributions, but, both in filtering and in smoothing, the

lassical Bayesian tracking algorithms estimate the a-posteriori prob-

bility assuming that that all the distributions are Gaussians. This is

ften a good approximation, and, if the tracked system has a linear

ynamic, a linear measurement model and a Gaussian initial state,

hese assumptions enable the application of the classical Kalman Fil-

er formulas. For non linear systems, we can use the Extended Kalman

ilter (EKF) which provides an approximation of the Kalman Filter by
inearizing the system according to the current estimates. Under lin-

arity and Gaussian noise assumptions, the Kalman Filter provides an

ptimal solution efficiently. A smoothed version of the Kalman Filter

lso exists and is called Kalman smoother.

When non-linearities are significant and the Gaussian assumption

oes not hold, non-parametric approaches are used. A non-parametric

pproach does not model the posterior probability as a parametric dis-

ribution, e.g., a Gaussian distribution, but it estimates the posterior

sing, for instance, a set of samples. More formally, let π be a generic

istribution, and Xi ∼ π independent samples with i = 1 . . . N. If δXi
is

irac function centered in Xi, then π̂ such that:

ˆ = 1

N

N∑
i=1

δXi
(4)

s a non-parametric, sample-based, approximation of π .

By approximating a state distribution with a set of samples, it is of-

en possible to compute measurement likelihood in a straightforward

ay: for each sample it is sufficient to compute a score as described

n Section 4.4.

In the next section we describe two tracking algorithms to im-

lement trajectory smoothing using a sample based approach. The

rst one computes the most likely sequence of states for the given

rajectory using the Viterbi algorithm [28], and it implements in an

xact way equation (3); the second approach is based on the use of

wo Particle Filters each using equation (7), and it provides a simpler

ut effective approximation of (3).

. Two methods for sample-based 3D smoothing

As opposed to typical 3D tracking algorithms, the methods com-

ared in the following do not directly process images, but they make

se of the 2D vehicles trajectories extracted from the 2D tracking al-

orithm presented in [2]. The 2D tracking algorithm recognizes the

ehicles by background subtraction [29], therefore vehicle measure-

ent corresponds to blobs. For each vehicle, a 2D Extended Kalman

ilter uses the blob centroids to estimate its trajectory on the image

lane. The resulting trajectories are composed by the history of blob

entroids on the image sequence and this is the input for the two

lgorithms presented here. By doing this, we compare the smooth-

ng and 3D trajectory reconstruction methods starting from the same

ata and, more relevantly, from the same data association.

The implemented algorithms use a model-based approach. Since

ehicle dimensions can vary significantly, a model with fixed dimen-

ion can cause problems, as described in [8], then we model the exist-

ng vehicles through a parallelepiped with different dimensions. We

odel three main classes of vehicles: cars, trucks and motorcycles.

or each class we define a reference parallelepiped, by setting a refer-

nce length value Lc and two ratio values rhc = Hc/Lc and rwc = Wc/Lc,

espectively for height (Hc) and width (Wc) computation. We create

set of models for each class by extracting a set of sample values of

odel length from a Gaussian distribution centered on the reference

ength Lc of each class, these are called class-scale samples. From each

f these samples we infer the model height and width from the val-

es rhc and rwc. We fixed all the parameters as in Table 1; we have

hosen reasonable values according to the dimensions of existing ve-

icles. We use a different standard deviation for each class, since car

imensions vary less than truck dimensions, and more than motor-

82 A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85

(a) Vehicle to track. (b) Projected model on the
image plane.

Fig. 3. Example of expected result when the correct parallelepiped model is projected

on to the image plane.

Fig. 4. 2D vehicle centroid projected on the plane passing through the 3D model center.

We extract the pose samples from the Gaussian centered on this projection for each

class-scale sample.

t

s

o

T

m

r

d

V

E

s

a

s

w

i

t

i

r

s

i

p

s

n

d

s

Fig. 5. Graph built to apply Viterbi algorithm.
cycle ones. Fig. 3 shows an example of the parallelepiped model pro-

jected on the image plane: the model must ideally wrap the tracked

vehicle.

In the following subsections we describe the two compared algo-

rithms: the Viterbi-based algorithm and the Particle Smoother. Both

algorithms compute the likelihood in the same way (we postpone

its description to Section 4.4). Moreover, considering that vehicles in

the roundabout (should) always proceed forward, the transition state

model slightly different from the common Gaussian motion model

used in literature. Instead of a Gaussian propagation model, we make

use of the log-normal distribution to model the motion difference

with respect to the previous pose and thus we bias the state transi-

tion in the forward direction as in [30,10].

4.1. Sampling a 3D state from a 2D measurement

Both the Viterbi and the Particle Smoother need to extract the 3D

sample states from the 2D measurements of the vehicle; the Viterbi

Algorithm performs this sampling stage frame-by-frame, while the

Particle Smoother uses it as the initialization of the smoothing

process.

In the sampling from 2D to 3D, the current blob and the next blob

centroids are projected on a plane parallel to the roundabout and

passing through the center of the vehicle model under evaluation.

Let the resulting points be, (xt, yt) and (xt+1, yt+1) respectively. Let

now θt be the orientation of the vector from (xt, yt) to (xt+1, yt+1); the

algorithm extracts a set of n samples from a trivariate Gaussian dis-

tribution having mean (xt, yt, θt) and a diagonal covariance structure

reflecting the independence of the three components (we set exper-

imentally σ 2
x = 0.5m, σ 2

y = 0.5m, σ 2
θ

= π/12 rad). Independence is

a reasonable assumption to simplify the tuning of the system, but a

non-diagonal covariance matrix could be used as well. A simplified

example of this operation is shown in Fig. 4; each of these samples

represents a vehicle state, i.e., vehicle position and orientation on the

roundabout plane at time t.

4.2. The Viterbi-based algorithm

For each 2D vehicle trajectory and for each class-scale sample,

the Viterbi-based algorithm (VBA) performs two steps: a frame-by-

frame sampling and the estimate of the most likely trajectory, i.e., the

sequence of samples, using the Viterbi algorithm [28].

In the frame-by-frame sampling, the algorithm extracts a set of

sample for each frame and for each class-scale sample according to the

algorithm described in Section 4.1. After this extraction step, we apply

the Viterbi algorithm for only the most likely class-scale sample: we

compute the likelihood (Section 4.4) of all the vehicle state samples;

then, for each class-scale sample, we compute the mean likelihood of
he most likely samples for each frame; finally, we choose the class-

cale sample which gives the highest sum of mean probabilities.

We use the Viterbi algorithm to compute the most likely sequence

f samples along the trajectory, extracted for the chosen class-scale.

he Viterbi algorithm finds the Maximum A-Posteriori (MAP) esti-

ate given a discretized state space: in our case the state space is

epresented by the set of all possible 3D poses of the vehicle, and the

iscretization is performed thanks to the previous sampling stage.

Let st be a state sample extracted at time 1 ≤ t ≤ T. The

iterbi algorithm finds the succession of samples which maximizes

q. (3) as:

¯1:T = arg max
s1:T

{p(s1:T |z1:T)} , (5)

nd, according to the Bayes rule and the Markov hypothesis:

¯1:T = arg max
s1:T

T∏
t=1

{p(st+1|st)p(zt+1|st+1)}

= arg min
s1:T

T∑
t=1

{− log(p(st+1|st))− log(p(zt+1|st+1))}, (6)

here we compute the likelihood term p(zt+1|st+1, st) as explained

n Section 4.4, and the transition probability p(st+1|st) coincides with

he log-normal motion model that we use within the particle filter.

In practical implementations of the Viterbi algorithm, the states,

.e., the samples, are represented in a graph as in Fig. 5: each node

epresents a state sample and each sample at time t is connected to

amples at time t + 1 through an arc weighted according to Eq. (6),

.e., − log(p(st+1|st))− log(p(zt+1|st+1, st)). Therefore, to find the best

ath according to Eq. (6), we look for the shortest path from a fictitious

tarting node, connected to samples at time 1, to a fictitious ending

ode, connected with each sample at time T; this can be efficiently

one through the Dijkstra algorithm [31]. In this way, we obtain the

uccession of vehicle states, i.e., the most likely trajectory.

A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85 83

4

l

r

a

M

c

d

p

w

p

p

w

a

w

T

p

i

s

s

n

i

i

i

s

i

t

w

p

s

i

s

s

w

c

P

o

t

s

t

t

m

t

overlapA

e

e

Fig. 7. Likelihood calculation: e1 counts the pixels of the blob not covered by the

projected model; e2 counts the pixels of predicted model that do not correspond to the

blob.

d

m

t

t

f

4

i

z

o

L

1

2

3

4

L

p

c

m

F

p

p

.3. The Particle Smoother algorithm

The second algorithm compared is a Particle Smoother which re-

ies on two Particle Filter trackers. Differently from the Viterbi algo-

ithm, which directly looks for the MAP solution, the Particle Filter,

nd, in turn, the Particle Smoother estimate the distribution of the

aximum A-Posteriori solution through a set of samples. The Parti-

le Filter deals with a continuous state, therefore we do not need to

iscretize it beforehand with the frame-by-frame sampling as in the

revious algorithm.

At each time t, the Particle Filter estimates p(st+1|z1:t) (Eq. (1))

ith a sampled distribution; a set of random state samples, called

articles, represents p(s1:t+1|z1:t+1) as:

(s1:t+1|z1:t+1) ≈
Ns∑

i=1

wi
t+1δ

(
s1:t+1 − si

1:t+1

)
, (7)

here wi
t+1 is the weight associated to the i-th particle. The weights

re updated at time t + 1 according to this equation:

i
t+1 ∝ wi

t

p
(
zt+1|si

t+1

)
p
(
si

t+1|si
t

)
p
(
si

t+1|si
t, zt+1

) . (8)

he main issue of Particle Filters is the particle degeneracy, i.e., the

articles tend to collapse around a single state value. To solve this

ssue, after weights computation, the Particle Filter resamples a new

et of particles according to approximated probability distribution of

t+1. This new set replaces old particles, and each new particle has

ow the same weight. More details about Particle Filter are available

n [27].

In our work, the particles represent the vehicle state at time t,

.e., vehicle position and orientation on the roundabout plane. We

mplemented a Particle Filter for each model defined by each class-

cale sample (see the algorithm in Fig. 6). These Particle Filters are

nitialized through a set of particles extracted from the first frame of

he 2D trajectory according to the steps described in Section 4.1, then

e apply the standard Particle Filter iterations. After this forward

ass of the vehicle trajectory, the algorithm chooses the best class-

cale sample to represent the tracked vehicle, i.e., for each time t

t computes the mean probability of particles for each class-scale

ample and, then, it chooses the class-scale sample for which the

um of those means is maximum. Consequently, we select the model

hose dimensions have been calculated from the class-scale sample

hosen.

At this point, we apply a backward recursion that turns the

article Filter into a Particle Smoother. We start from the last group

f particles estimated by the forward Particle Filter and we change

he sign of the orientations. Then, we apply a second instance of the

ame Particle Filter that tracks the vehicle backward by considering

he blob measurements in reverse order. We do not need to change

he orientation of the vehicle parallelepiped model since it is sym-

etric under rotations about its centroid.

Taking into account the theoretical result about which particles

ends to wrap around the real state, the second recursion aims at
Fig. 6. Flow chart for the Particles Smoother algorithm.

w

c

t

iminishing particles variance and it especially makes the estimate

ore accurate for the states in the first part of the trajectory where

he forward Particle Filter had not yet collected sufficient information

o converge. This backward recursion acts as a smoother; a detailed

ormalization of the Backward Particle Smoother is in [32, p. 167].

.4. Likelihood calculation

In both the methods that we investigated in this paper, a key step

s the computation of the samples likelihood. Let focus on measures

t which are the blobs extracted through background subtraction and

n the state st representing vehicle pose on the roundabout plane.

ikelihood calculation follows these steps, analogous to [8] and [23]:

. Project on the image plane the model located in st on the round-

about (the red polygon in Fig. 7).

. Compute blob area (Ablob), visible model projection area (Amv), and

overlap area between the blob and the model projection (Aoverlap)

(see Figs. 7 and 8).

. Compute the two errors e1 = Ablob − Aoverlap and e2 = Amv − Aoverlap

(see Fig. 7).

. Define the score term: e = [λ1e1 + λ2e2]/Ablob, where λ1 e λ2

weight e1 and e2 such that λ1 + λ2 = 1.

ikelihood is then defined as:

(zt|st) =
{

1 − e, if 1 − e > 0

0, if 1 − e < 0.
(9)

Notice that only the visible part of the model projection concurs to

ompute the likelihood. So, Amv is not the entire area of the projected

odel, but the projected area visible in the current camera image.

ig. 8 shows the difference between Amv and the area of the entire

rojected model, Am.

Leveraging on the flexibility of the region-based approach, we im-

lemented the likelihood calculation in a multiple camera setting too,

here a vehicle could be seen by more than one camera. Likelihood

alculation is the only one stage of our algorithms in which we have

o consider the presence of more than one camera.
Fig. 8. Difference between Amv and Am (shaded area).

84 A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85

Table 2

Tracking errors in the simulated and real scenarios.

Median MAD IQR

x(m) Simulated VBA 0.036 0.042 0.090

PSA −0.027 0.022 0.050

Real VBA single camera −0.180 0.236 0.468

PSA single camera −0.171 0.171 0.348

VBA multicamera 0.154 0.305 0.512

PSA multicamera −0.056 0.261 0.475

y(m) Simulated VBA −0.039 0.055 0.113

PSA 0.004 0.023 0.046

Real VBA single camera −0.136 0.316 0.500

PSA single camera 0.058 0.135 0.277

VBA multicamera −0.041 0.241 0.384

PSA multicamera 0.094 0.179 0.248

d(m) Simulated VBA 0.090 0.054 0.059

PSA 0.046 0.040 0.056

Real VBA single camera 0.483 0.215 0.392

PSA single camera 0.288 0.116 0.187

VBA multicamera 0.343 0.215 0.288

PSA multicamera 0.237 0.191 0.125

θ(deg) Simulated VBA −4.137 1.281 2.478

PSA 0.803 1.176 2.459

Real VBA single camera −3.664 5.123 10.227

PSA single camera 4.156 2.446 4.875

VBA multicamera −3.759 3.845 7.718

PSA multicamera 2.401 7.629 8.465

c

t

f

f

p

t

p

S

t

n

i

t

t

M

t

s

r

1

E

m

w

c

t

c

c

a

m

Table 3

Execution times (in seconds).

Number of frames 45 106 230 442

VBA 255 1456 3642 6598

PSA 87 624 1141 2817
Let z
j
t be the blob of one vehicle perceived by the j-th camera

(Cj), and nc the number of cameras. Let pj(z
j
t|st) be the likelihood

calculated for each camera j according Eq. (9); this value is weighted

according to the probability of observing the vehicle from that camera,

i.e., p(Cj) = A
j
mv/A

j
m, and, by doing so, the overall likelihood becomes:

ptot(zt|st) = p(C1)p1

(
z1

t |st

) + p(Cnc
)pnc

(
znc

t |st

)
p(C1)+ · · · + p(Cnc

)
. (10)

The camera probability p(Cj) = A
j
mv/A

j
m takes into account differ-

ent situations. For instance, with only two cameras, when both cam-

eras see the whole vehicle, or, more precisely, the back-projected

model, they have the same probability equal to 0.5; when one cam-

era does not see the model, its probability is zero. In general the

probability is proportional the observed model percentage.

5. Experimental results

We presented the Viterbi Based Algorithm and the Particle

Smoother implementations to reconstruct the 3D trajectory of ve-

hicles from a sequence of images. We compared the two algorithms

by testing them in a simulated and in a real scenario where the ground

truth is known. In the video http://youtu.be/8swc1nhxs14 we show

the results in both cases.

For the simulated scenario we created six video sequences where

a fixed-size parallelepiped model virtually drove through a hypothet-

ical roundabout. We simulated two different trajectories: a uniform

circular motion and a linear motion where the synthetic car starts,

stops and leaves again. For each trajectory we use three different per-

spectives. The simulated scenario represents an ideal case because

the blobs representing the vehicle coincide exactly with the paral-

lelepiped used by the tracking: the errors due to noise ware signifi-

cantly reduced and have almost no relevance with respect to a real

case. Moreover, the results obtained in this experiment give an idea

of the maximum performance the two methods can attain.

The real scenario came from a field survey where vehicles circu-

lating in a roundabout were recorded by two cameras, but the true

vehicle positions on ground are not a priori known; therefore, we

equipped a vehicle with an RTK-GPS device and an inertial sensor and

we collected an accurate estimate of the vehicle positions and ori-

entations for nine transits of this vehicle. In this way, we have been

able to evaluate performance both in the single and in the multiple

camera cases.

To obtain a proper result, the comparison between poses requires

the two poses to be taken at the same time. However, synchronization

between RTK-GPS devices, inertial sensors and video cameras was not

perfect. In addition, the sensors and the cameras working frequencies

was different, so that the estimate provided by sensors and our al-

gorithm cannot be considered perfectly synchronous. In the multiple

camera case this imperfect synchronization between the two consid-

ered video cameras has been another source of error. Nevertheless,

these issues affect in equal manner the two compared algorithm.

Table 2 reports tracking errors for the Viterbi Based Algorithm

(VBA) and the Particle Smoother (PSA) with one camera and in a mul-

tiple camera setup both in simulated and real scenarios. The errors

are computed for x and y coordinates of vehicle pose; we report the

distance d between the estimated x, y and the ground truth, and its

orientation θ , in degrees. The median, MAD and IQR values are pre-

sented. MAD is the median absolute deviation, i.e., for a certain x

vector MAD = median(|xi − median(x)|∀i), and IQR is the Inter Quar-

tile Range, where IQR = Q 3
4

− Q 1
4

where Q 1
4

is first quartile and Q 3
4

is

third quartile of the error distribution. Both MAD and IQR represent

an error dispersion index; the smaller they are, the better it is.

Errors are generally very low: a few centimeters for x and y co-

ordinates of pose, and only a few degrees for orientation θ . In the

simulated case the two algorithms reach a very satisfying accuracy,
onsistent with the aims of many types of analyses on vehicle trajec-

ory. However, the PSA gives better results than VBA; this is due to the

act that VBA extracts state samples from each frame independently

rom previous or next state, while Particle Smoother generates a set of

articles-samples starting from previous particles through the state

ransition model and this increases its density of sample in the useful

arts of the search space (we report a more detailed discussion in

ection 6).

VBA is computationally less efficient than Particle Smoother, due

o the shortest path search which has quadratic complexity in the

umber of frames; Particle Smoother has a linear complexity because

t uses two Particle Filters which are, in turn, linear. We report execu-

ion times in Table 3 as a function of the number of frames in which

he vehicle appears; the PSA is three time faster with respect to VBA.

oreover, PSA turned out easier to be implemented with respect to

he VBA. It should be noted that Particle Smoother uses 250 state

amples for each frame, VBA needs 500 samples to reach comparable

esults. Both algorithms use a set of 30 class-scale samples, that is,

0 samples for each of the three classes: car, truck and motorcycle.

xecution times are considerably high because, at this stage of imple-

entation, we preferred to use MatlabTMdevelopment environment,

hich offers high flexibility and ease of implementation, but at the

ost of some reduced efficiency. It should be noticed that most of

he computation could be performed in a parallel manner on modern

omputer architectures in a similar fashion both for PSA and for VBA.

The aim of both experimental setups was mainly to test the ac-

uracy of the tracking of vehicles reached by the two compared

lgorithm. Therefore we did not investigate the accuracy in the esti-

ate of vehicle dimensions. However, the two (pose and dimensions)

http://youtu.be/8swc1nhxs14

A. Romanoni et al. / Pattern Recognition Letters 51 (2014) 79–85 85

e

t

6

t

p

s

t

n

p

i

a

w

m

c

i

t

b

s

s

A

p

M

f

t

o

a

t

t

o

s

t

d

s

p

(

o

f

m

i

p

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

stimates are strictly correlated; in both simulated and real scenarios

he parallelepiped dimensions was handled in quite an accurate way.

. Discussion and conclusions

In this paper, we compared two algorithms to implement a 3D

racking system using a model-based and region-based approach. In

articular, we focus our experimental analysis on the roundabout

cenario since it offers a challenging test-bed where perspective dis-

ortions and vehicle inter-occluding trajectories make the 3D tracking

ecessary to enable traffic monitoring and flow analysis.

In the first part of the paper we supported the choice of this ap-

roach. Model-based is the standard approach to 3D vehicle track-

ng: some researchers adopt an edge-based approach while others

region-based one. Even if it is less robust to illumination changes,

e choose the latter for two main reasons: it is robust against local

inima minimization issue, and it is flexible, since we have not to

hoose an accurate model of the tracked vehicle.

Then we implemented two Monte Carlo smoothing algorithms,

.e., the Viterbi-based (VBA) and the Particle Smoother (PSA) both for

he single camera and the multiple camera cases, and we tested them

oth in simulated and in real scenarios. The experimental results

howed that the PSA reaches better performance, both in terms of

peed and accuracy.

From a theoretical perspective the VBA provides the Maximum

-Posteriori estimate of the vehicle trajectory, while the PSA only ap-

roximates the Maximum a Posteriori distribution (out of which the

AP estimate is computed) in a sample-based fashion. Therefore, be-

ore the comparison, we expected that VBA would have outperformed

he PSA, at least in terms of extracting the best solution; the results

verturn our belief.

The reason of this apparently counter-intuitive result has to be

scribed to the state discretization in the Viterbi algorithm: VBA finds

he trajectory among the set of samples extracted from each frame,

hen it does not look for the MAP estimate in the whole continu-

us state space. To obtain the real MAP estimate we should have

ubsampled the space with an infinitesimal discretization, increasing

he number of samples considerably. Indeed, we tested the VBA with

ifferent combinations of parameters and we found that the most

ensitive parameter is the number of samples, but to have a fair com-

arison with the PSA we chose to limit the number of samples to 500

already twice as much the number of samples of the PSA). More-

ver, the PSA deals with a continuous state and extracts the samples

rom a continuous distribution at each frame. This lets the motion

odel, in the PSA, to focus the samples around the real state, while,

n the Viterbi case, the motion model is only involved in the posterior

robability evaluation.

eferences

[1] S. Kamijo, Y. Matsushita, K. Ikeuchi, M. Sakauchi, Traffic monitoring and accident

detection at intersections, IEEE Trans. Intell. Transp. Syst. 1 (2000) 108–118.
[2] L. Mussone, M. Matteucci, M. Bassani, D. Rizzi, Traffic analysis in roundabout in-

tersections by image processing, in: Proceedings of the 18th IFAC World Congress,

vol. 18, 2011.
[3] R. Cucchiara, M. Piccardi, P. Mello, Image analysis and rule-based reasoning for a

traffic monitoring system, IEEE Trans. Intell. Transp. Syst. 1 (2000) 119–130.
[4] A. Prati, I. Mikic, M.M. Trivedi, R. Cucchiara, Detecting moving shadows:
algorithms and evaluation, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003)

918–923.
[5] Y.K. Jung, Y.S. Ho, Traffic parameter extraction using video-based vehicle tracking,

in: Intelligent Transportation Systems, Proceedings, 1999 IEEE/IEEJ/JSAI Interna-
tional Conference on, IEEE, 1999, pp. 764–769.

[6] L. Mussone, M. Matteucci, M. Bassani, D. Rizzi, An innovative method for the
analysis of vehicle movements in roundabouts based on image processing, J. Adv.

Transp. 47 (6) (2013) 581–594.

[7] V. Lepetit, P. Fua, Monocular model-based 3D tracking of rigid objects: a survey,
in: Foundations and Trends in Computer Graphics and Vision, pp. 1–89.

[8] X. Song, R. Nevatia, Detection and tracking of moving vehicles in crowded scenes,
in: Motion and Video Computing, WMVC ’07, IEEE Workshop on, 2007, p. 4.

[9] Z. Zhang, K. Huang, T. Tan, Y. Wang, 3d model based vehicle tracking using gradient
based fitness evaluation under particle filter framework, in: Pattern Recognition

(ICPR), 2010 20th International Conference on, IEEE, pp. 1771–1774.

10] M. Matteucci, D. Rizzi, A. Romanoni, L. Mussone, 3d image processing of vehicular
trajectories in roundabouts, in: World Conference on Transportation Research, pp.

1–11. Available at http://www2.wctr2013rio.com/publications/1077/index.html.
11] A. Yilmaz, O. Javed, M. Shah, Object tracking: a survey, ACM Comput. Surv. 38

(2006) 13.
12] P. Pérez, C. Hue, J. Vermaak, M. Gangnet, Color-based probabilistic tracking, in:

Computer Vision ECCV 2002, Springer, 2002, pp. 661–675.

13] D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking, IEEE Trans. Pat-
tern Anal. Mach. Intell. 25 (2003) 564–577.

14] D.A. Ross, J. Lim, R.S. Lin, M.H. Yang, Incremental learning for robust visual track-
ing, Int. J. Comput. Vis. 77 (2008) 125–141.

15] H. Zhou, Y. Yuan, C. Shi, Object tracking using sift features and mean shift, Com-
puter Vis. Image Understanding 113 (2009) 345–352.

16] S. Zhang, H. Yao, X. Sun, X. Lu, Sparse coding based visual tracking: review and

experimental comparison, Pattern Recognit. 46 (2013) 1772–1788.
17] N. Buch, S.A. Velastin, J. Orwell, A review of computer vision techniques for the

analysis of urban traffic, IEEE Trans. Intell. Transp. Syst. 12 (2011) 920–939.
18] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge

University Press, 2000.
19] J. Lou, T. Tan, W. Hu, H. Yang, S. Maybank, 3-D model-based vehicle tracking, IEEE

Trans. Image Process. 14 (2005) 1561–1569.

20] H. Yang, J. Lou, H. Sun, W. Hu, T. Tan, Efficient and robust vehicle localization, in:
Image Processing, Proceedings, 2001 International Conference on, vol. 2, 2001,

pp. 355–358.
21] D.A. Migliore, M. Matteucci, M. Naccari, A revaluation of frame difference in fast

and robust motion detection, in: Proceedings of the 4th ACM International Work-
shop on Video Surveillance and Sensor Networks, VSSN ’06, ACM, New York, NY,

USA, 2006, pp. 215–218.

22] T. Brox, B. Rosenhahn, J. Weickert, Three-dimensional shape knowledge for joint
image segmentation and pose estimation, in: W.G. Kropatsch, R. Sablatnig, A.

Hanbury (Eds.), DAGM-Symposium, vol. 3663, Lecture Notes in Computer Science,
Springer, 2005, pp. 109–116.

23] N. Buch, F. Yin, J. Orwell, D. Makris, S. Velastin, Urban vehicle tracking using a
combined 3D model detector and classifier, in: J. Velásquez, S. Ríos, R. Howlett,

L. Jain (Eds.), Knowledge-Based and Intelligent Information and Engineering Sys-
tems, vol. 5711, Lecture Notes in Computer Science, Springer Berlin/Heidelberg,

2009, pp. 169–176.

24] H. Kollnig, H.H. Nagel, 3d pose estimation by directly matching polyhedral models
to gray value gradients, Int. J. Comput. Vis. 23 (1997) 283–302.

25] K.H. Lee, J.N. Hwang, J.Y. Yu, K.Z. Lee, Vehicle tracking iterative by Kalman-based
constrained multiple-kernel and 3-d model-based localization, in: Circuits and

Systems (ISCAS), 2013 IEEE International Symposium on, IEEE, pp. 2396–2399.
26] D. Fox, J. Hightower, L. Liao, D. Schulz, G. Borriello, Bayesian filters for location

estimation, IEEE Pervasive Comput. 2 (2003) 24–33.

27] M. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50

(2002) 174–188.
28] G.J. Forney, The viterbi algorithm, Proc. IEEE 61 (1973) 268–278.

29] A. Romanoni, M. Matteucci, D.G. Sorrenti, Background subtraction by combining
temporal and spatio-temporal histograms in the presence of camera movement,

Mach. Vis. Appl. 25 (6) (2014) 1573–1584.

30] A. Romanoni, Ricostruzione 3D delle traiettorie veicolari da immagini di una o
più telecamere, Master’s thesis, Politecnico di Milano, 2012.

31] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math.
1 (1) (1959) 269–271.

32] S. Särkkä, Bayesian Filtering and Smoothing, vol. 3, Cambridge University Press,
2013.

http://refhub.elsevier.com/S0167-8655(14)00256-6/bib001
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib002
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib003
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib004
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib005
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib006
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib007
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib008
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib009
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib010
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib011
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib012
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib013
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib014
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib015
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib016
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib017
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib018
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib019
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib020
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib021
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib022
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib023
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib024
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib025
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib026
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib027
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib028
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib029
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib030
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib031
http://refhub.elsevier.com/S0167-8655(14)00256-6/bib032

	A comparison of two Monte Carlo algorithms for 3D vehicle trajectory reconstruction in roundabouts
	1 Introduction
	2 3D model-based tracking
	3 Bayesian tracking and smoothing
	4 Two methods for sample-based 3D smoothing
	4.1 Sampling a 3D state from a 2D measurement
	4.2 The Viterbi-based algorithm
	4.3 The Particle Smoother algorithm
	4.4 Likelihood calculation

	5 Experimental results
	6 Discussion and conclusions
	References

