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Abstract—Semantic segmentation as one of the 
most popular scene perception techniques has been 
studied for autonomous vehicles. However, deep 
learning-based solutions rely on the volume and 
quality of data and knowledge from specific scene 
might not be incorporated. A novel knowledge-driven 
semantic segmentation method is proposed for 
waterway scene perception. Based on the knowledge 
that water is irregular and dynamically changing, a 
Life Time of Feature (LToF) detector is designed to 
distinguish water region from surrounding scene. 
Using a Bayesian framework, the detector as the 
likelihood function is combined with U-Net based 
semantic segmentation to achieve an optimized 
solution. Finally, two public datasets and typical 
semantic segmentation networks, FlowNet, DeepLab and DVSNet are selected to evaluate the proposed method. Also, 
the sensitivity of these methods and ours to dataset is discussed. 
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I. Introduction 

MPROVING the ability of intelligent agents to understand 

their working environment is one of the current research 

topics in the field of autonomous vehicles. Advanced sensor 

technologies for object detection, localization, tracking, and 

recognition in structured environments [1] have been relatively 

well developed. Waterway is a typical unstructured scene that 

lacks of adequate and stable reference information. Thus, there 

seems to be a challenge for the technologies applied in complex 

waterway scene. Due to the dynamic, diversity and randomness 

characteristic of the water surface, the performance of 

perception algorithm is degraded seriously [2,3]. 

Different from traditional detection algorithms based on 

artificial feature or box regression, semantic segmentation that 

utilizes deep learning to classify each pixel of images shows 

great promise in such scene perception tasks [4,5]. FCN [6], 
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SegNet [7], U-Net [8,9], and Deeplab [10], as typical deep 

learning models have been studied for semantic segment. 

However, these models rely heavily on preliminary collection 

of volume and quality data, which is hardly possible in actual 

applications. Furthermore, sample labeling is extremely tedious 

and time consuming for most semantic segmentation 

algorithms. 

For this purpose, a knowledge-driven semantic segmentation 

method is proposed for waterway scene perception. Based on 

the knowledge that water surface with the characteristic of 

dynamical and unstable texture is almost impossible to track, a 

Life Time of Feature (LToF) detector is designed to distinguish 

water from the scenario. Using a Bayesian framework, the 

detector as the likelihood function is used to calculate a 

probabilistic map for sematic segmentation, and the poster 

probabilistic map can be acquired by fusing the output of U-Net 

as the prior probabilistic map with the likelihood probabilistic 
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map. To illustrate the performance of the method, comparative 

experiments with typical semantic segmentation networks 

FlowNet, DeepLab, and DVSNet are carried out on public 

maritime datasets. Also, the sensitivity of these methods to 

datasets will be discussed in this work.  

The rest of this article is organized as follows. Section II 

describes the related works on semantic partitioning and their 

application in autonomous vehicles. Section III presents the 

proposed knowledge-based semantic partitioning framework. 

Section IV conducts extensive experiments to analyze and 

confirm the effectiveness of the proposed framework. Finally, 

Section V provides an overview of future work and the 

conclusions. 

II. RELATED WORK 

Advanced sensors and techniques have been considered in 

various applications for scene perception, e.g., Synthetic 

aperture radar (SAR) [11], sonar [12], computer vision [13], etc. 

In recent years, there has been a growing interest in 

leveraging deep learning techniques for semantic segmentation. 

Shi et al. [14] proposed an effective occlusion mask method 

using clustering and boundary determination to mask 

occlusions into convex shapes. Various deep neural networks 

have been developed for semantic segmentation in different 

scene partitions [15,16]. For example, Choi et al. [17] simulated 

raw ocean images in real-time using CNN architectures, such 

as VGGNet, Inception.v3, ResNet, and DenseNet. Additionally, 

Song et al. [18] introduced a system based on local HSRRSI 

water features in Mask R-CNN [19] for object recognition and 

automatic water quality extraction. Moreover, Cheng et al. [20] 

and Sun et al. [21] have shown that CNNs have achieved good 

results in image semantic segmentation in certain cases. U-Net 

as a semantic segmentation framework could be combined with 

another edge detection framework for detecting coastline from 

marine scene [22]. Dense skip connections and attention 

mechanism are performed in U-Net to improve the precision of 

the segmentation on water areas [23]. Combining U-Net with 

the level set method is proven outperform U-Net based 

segmentation [24]. Adaptive dual path learning framework [25] 

that combines self-supervised learning with image-to-image 

translation was proven to have great effectiveness in semantic 

segmentation. 

Alternatively, there has been an increasing interest in 

leveraging multimodal data for semantic segmentation. Huang 

et al. [26] improved the performance and generalization 

capability of end-to-end autonomous driving with scene 

understanding leveraging deep learning and multimodal sensor 

fusion techniques. Qiu et al. [27] studied semantic segmentation 

for outdoor scene based on multi-sensor fused data acquired by 

unmanned ground vehicle (UGV), and a projection algorithm 

to generate a 2D RGB-DI image from the 3D RGB-DI point 

cloud was proposed so that the semantic segmentation in RGB-

DI cloud points is transformed to the semantic segmentation in 

RGB-DI images. Ćesić et al. [28] compared images of obstacles 

detected by visual detection using a stereo camera with those 

detected by a radar detection technique. Osborne et al. [29] used 

visible and thermal imaging with time-domain stability 

characteristics to separate and classify targets. Wang et al. [30] 

integrated stereo photography with visual obstacle separation 

technology to detect obstacles below the coastline. Finally, 

Sinisterra et al. [31] estimated the motion parameters of moving 

sea vehicles to help USVs separate moving target vehicles. 

Overall, these studies demonstrated the potential of 

traditional, deep learning, and multimodal data-based 

approaches for semantic segmentation in various marine-

related applications. Inspired by the above work, we proposed 

a knowledge-driven semantic segmentation method for 

waterway navigation scene perception of autonomous ships. 

Our method takes the deep learning segmentation result as a 

priori probability and uses water unstructured feature 

knowledge as a driver to modify the segmentation result. This 

hybrid method improves efficiency while ensuring accuracy in 

segmenting obstacles on the water surface at different locations. 

III. METHODOLOGY 

This section presents a novel knowledge-driven semantic 

segmentation method specifically designed for visual 

perception of waterway scene. Each pixel can be accurately 

classified into two categories: water or obstacle based on the 

prior knowledge that water surface presents dynamic and 

transient feature while the feature extracted from structured 

objects (obstacles) mostly is stable and slow-changing. To 

achieve it, optical flow is calculated from sequential images, 

and a novel semantic feature is defined by the lifetime of these 

feature points from optical flow. Thus, a LToF detector is 

designed to distinguish water from visual scene according to the 

lifetime statistics of optical flow. 

In detail, the proposed LToF detector based on optical flow 

as the observation model of each pixel is taken as likelihood 

function. The confidence of semantic segmentation is taken as 

the prior probability in Bayesian framework. By applying 

Bayes' rule, the post probabilities of all pixels in the image 

could be calculated. The details of the proposed method are 

illustrated in the abstract figure. Either the LToF detection or 

the semantic segmentation is further introduced in the following 

sections. 

A. LToF detection based on optical flow 

Life Time of Feature (LToF) is defined as the duration during 

which one feature can be stably tracked between image 

sequences. By introducing LToF, the temporal characteristic of 

the features extracted from various objects can be calculated. 

Classical Kanade-Lucas-Tomasi (KLT) optical flow algorithm 

[32] is applied to extract and track feature points from scene. 

The LToF distributions of water surface and non-water are 

displayed in Fig. 1. It can be seen that the LToFs of water 

surface and non-water are distinctly different. Experientially 

two Gaussian functions are utilized to approximate the LToF 

distributions of water surface and non-water, respectively, as 

follows: 

𝑡~ {
𝑓1(𝜇1, 𝜎1

2)

𝑓2(𝜇2, 𝜎2
2)

                                (1) 

where 𝑡  denotes the LToF distribution and composes of two 

Gaussian functions 𝑓1and 𝑓2. The LToF distribution in Fig. 1 

can be used to classify the feature into water surface or non-

water. Thus, the means and variances 𝜇1 ,  𝜎1
2 , 𝜇2, 𝜎2

2  of the 

Gaussian functions should be determined firstly. 
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Based on empirical knowledge, it is implied that the water 

surface in a water navigation scene is irregular and dynamic. 

Consequently, the feature point tracking time period of the 

water area, which is measured by the LToF value, is shorter 

than that of the non-surface area, which may contain various 

obstacles. To address the issue, we designed a model using 

Gaussian components with a smaller mean 𝜇1 to represent the 

LToF map of the water surface, and Gaussian components with 

a larger mean 𝜇2 to represent the LToF map of obstacle areas. 

𝐼𝑖,𝑗 is used to denote the region of the feature point, where 𝐼𝑖,𝑗 =

1 represents the feature point of the water surface area, and 

𝐼𝑖,𝑗 = 2 represents the feature point of the obstacle area. 

Eq. (2) illustrates the two Gaussian LToF models employed 

in this study. The observed LToF data comprises time 

observations ti,j, while the hidden data encompasses fi,j (the 

value of the latent function at input ti,j), and the mode identity 

of the LToF at different samples. The probabilities of LToF are 

represented by 𝜕𝐼𝑖,𝑗
, where 𝐼𝑖,𝑗=1 or 2. 

𝑓(𝑡𝑖,𝑗 , θ) = ∑ 𝜕𝐼𝑖,𝑗=𝑘
1

√2𝜋𝜎𝐼𝑖,𝑗=𝑘
2

2
𝑗=1 𝑒𝑥𝑝 [−

(𝑡𝑖−𝜇𝐼𝑖,𝑗=𝑘)2

2𝜎𝐼𝑖,𝑗=𝑘
2 ]   (2) 

where 𝜽 = [𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2] denotes the involved two Gaussian 

LToF models. The LToF map consists of two regions: water 

surface and obstacles, as shown below. 

f(𝑡𝑖,𝑗 , 𝐼𝑖,𝑗 = k, θ) =
1

√2𝜋𝜎𝐼𝑖,𝑗=𝑘
2

exp [−
(𝑡𝑖,𝑗−𝜇𝐼𝑖,𝑗=𝑘)2

2𝜎𝐼𝑖,𝑗=𝑘
2 ]      (3) 

As the mean value of the LToF map on the water surface is 

generally smaller than that of obstacles, this difference can be 

utilized to design a suitable model for detecting feature points 

of obstacles by calculating the LToF threshold T. The LToF 

threshold T, as presented in Eq. (4), is defined as the intersection 

of the two Gaussian maps. 

𝑓(𝑇, 𝐼𝑖,𝑗 = 1, 𝜽) = 𝑓(T, 𝐼𝑖,𝑗 = 2, 𝜽)                 (4) 

The LToF threshold T is fully determined can be calculated 

by the Gaussian distributions of water and non-water regions. 

To better calculate T, hyper-parameters 𝒍 = [𝑙1, 𝑙2, 𝑙3]  is 

introduced and obtained from the parameters 𝜽 as follows: 

{

𝑙1 = 𝜎1
2 + 𝜎2

2

𝑙2 = 𝜎2
2𝜇1 + 𝜎1

2𝜇2

𝑙3 = 𝜎2
2𝜇1

2 + 𝜎1
2𝜇2

2 + 2𝜎1
2𝜎2

2ln (𝜎1/𝜎2)

      (5) 

After the expansion of Eq. (5), the LToF threshold 𝑇 can be 

expressed as a polynomial function of the hyper-parameters 𝑙1, 

𝑙2, and 𝑙3. Specifically, we have: 

𝑇 = (𝑙2 + (𝑙2
2 − 𝑙1 ∙ 𝑙3)

1

2)/𝑙1            (6) 

Here, the hyper-parameters 𝑙1, 𝑙2, 𝑙3  are polynomial 

coefficients that are used to determine the shape of the 

polynomial function. 

To determine the distribution parameters 𝜇𝑖, 𝜎𝑖  (𝑖 = 1,2) , 

Curve Fitting Toolbox (https://ww2.mathworks.cn/ products 

/curvefitting.html) is used to fit the data acquired from the LToF 

detector. This toolbox provides the calculation of Gaussian 

fitting and can obtain the mean and variance of the Gaussian 

function. 

After calculating the threshold 𝑇 using Eq. (6), feature points 

with a lifetime exceeding T are defined as longevous feature 

points, which are generally extracted from obstacles. The two 

Gaussian models of LToF maps used for detecting longevous 

feature points can be defined as the likelihood function of the 

observation model for these feature points. The likelihood 

function of the longevous feature points can be expressed as: 

𝑃(𝑌𝑖,𝑗 = 𝑡𝑖,𝑗|𝑋𝑖,𝑗ϵo) =
1

√2𝜋𝜎𝐼𝑖,𝑗=𝑘
2

exp [−
(𝑡𝑖,𝑗−𝜇𝐼𝑖,𝑗=2)2

2𝜎𝐼𝑖,𝑗=2
2 ]   (7) 

where 𝑌𝑖,𝑗  denotes the observation state of the longevous 

feature point (𝑥𝑖 , 𝑦𝑖) , the LToF 𝑡𝑖,𝑗  is the measurement, 

𝑋𝑖,𝑗ϵ{w, o}  denotes the pixel attributes, and 𝑋𝑖,𝑗ϵo  represents 

(𝑥𝑖 , 𝑦𝑖) as in the obstacle area, 𝑋𝑖,𝑗ϵw represents (𝑥𝑖 , 𝑦𝑖) as in 

the water surface area. 

Except the longevous feature points, the remaining pixel 

points in the video have not yet been tracked in the KLT. 

Clustering [33] is applied to determine the categories of the 

pixels that were not tracked by KLT. Using the intensity and 

coordinate of each pixel as feature, the closer to a non-water 

pixel and the similar with the color of a non-water pixel, the 

greater the probability that the pixel belongs to non-water. 

The model starts from the longevous feature points as seeds 

and iteratively calculates the distance and gray difference 

between the untracked pixels and the seed points until the 

observation value 𝑑𝑖,𝑗  is obtained for each untracked pixel 

point. 

𝑑𝑖,𝑗 = (1 −
∆𝐼𝑖,𝑗

1080
) ∙ (1 −

∆𝑠𝑖,𝑗

255
)                     (8) 

 
Fig. 1.  The graphical model for LToF with two Gaussian maps. 
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In the equation, 𝑑𝑖,𝑗  represents the measurement, and the 

algorithm utilizes ∆𝐼𝑖,𝑗 and ∆𝑠𝑖,𝑗 to describe the gray difference 

between the new pixels and seed pixels. Fig. 2 illustrates the 

Likelihood probability based on intensity and distance 

clustering. Intensity and Distance donates the differences 

between the intensities and coordinates of untracked pixels and 

seed pixels, respectively. 

 

 
By analyzing the standard segmentation labels of each water 

navigation scene, it is found that the ratio of water area to 

obstacle area in the water navigation scene image is 4:1. 

Therefore, the observation value threshold of the untracked 

pixel points is set to 80%. When the observation value exceeds 

80%, the untracked pixel point is judged to belong to the 

obstacle area. 

After performing the clustering algorithm with each 

longevous feature point as the seed, the probability of the 

remaining pixels being obstacles gradually accumulates. Based 

on this, assuming there are 𝑛  feature points detected, the 

likelihood function of these pixels is defined as follows: 

𝑃(𝑌𝑖,𝑗 = 𝑑𝑖,𝑗|𝑋𝑖,𝑗ϵo) =
1

𝑛
∑ 𝑘𝑖 ∙ exp (𝑑𝑖,𝑗)𝑛

𝑖     (9) 

where 𝑖 denotes a specific feature point, 𝑛 denotes the number 

of detected feature points, 𝑘𝑖  represents the scaling factor, 

which is positively correlated with the probability of this 

longevous feature point, as shown below: 

𝑘𝑖 ∝ 𝑃(𝑌𝑖,𝑗 = 𝑡𝑖,𝑗|𝑋𝑖,𝑗ϵo)            (10) 

The likelihood function is based on two empirical 

knowledge. Firstly, the water surface in a water navigation 

scene is irregular and dynamic, resulting in shorter feature point 

tracking time periods for the water area, as measured by the 

LToF value, compared to the non-surface area, which may 

contain various obstacles. Secondly, a closer distance and 

smaller color difference between the untracked pixels and 

longevous feature points suggest a higher probability of the 

untracked pixel belonging to an obstacle area. Therefore, the 

likelihood function of each pixel in the waterway navigation 

scene image can be expressed as follows: 

𝑃(𝑌|𝑋𝑖,𝑗ϵo)~ {
𝑃(𝑌𝑖,𝑗 = 𝑡𝑖,𝑗|𝑋𝑖,𝑗ϵo)

𝑃(𝑌𝑖,𝑗 = 𝑑𝑖,𝑗|𝑋𝑖,𝑗ϵo)
              (11) 

B. Semantic Segmentation based on U-Net 

A measurable model was developed using U-Net, based on 

the confidence level of segmentation for ship trajectory 

problems. Various U-Net models are available in graphical 

segmentation. U-Net was shown to be a very useful 

segmentation algorithm in [34], and the network architecture is 

illustrated by Fig. 3 in details. 

The architecture mainly comprises of two iterations of 3×3 

convolutions with activation ReLU, and 2×2 maximum pooling 

for down-sampling after each convolution. As shown in Fig. 3, 

Conv 3×3 refers to a convolution layer with a convolution 

kernel 3 × 3, ReLU is an activation function for the 

convolutional layer, and Max pool 2 × 2 refers to a down-

sampling operation on the acquired feature map and can resize 

the map to 1/2. Up-conv 2×2 is defined to a up sampling 

operation by a convolution layer with a convolution kernel 2×2. 

During the up-sampling stage, the feature channels are 

increased, and each extended pathway contains a diagram of the 

upper sampling characteristics, a 2 × 2 up-convolution, 

 
Fig.2. Likelihood probability based on intensity and distance 

clustering. 
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Fig. 3.  The U-Net architecture based on the confidence level of 

segmentation 
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concatenating them with the corresponding feature maps in the 

compressed route, and performing a 2×3 convolution with each 

ReLU process. Cropping is required because edge pixels are 

lost for each convolution. 

In the fourth stage, the 64-component feature vector 

corresponds to classifications using a 1×1 convolution, and the 

entire network consists of 23 convolutions. To achieve seamless 

completion of the output profile stitching, it is crucial to select 

the appropriate input interpolation size, and the 2x2 maximum 

interpolation operation can be suitable for all X and Y size of 

the same layer. 

Both the input video and the corresponding segmentation 

graph can be learned by a neural network. As no convolution is 

performed, the edge width of the output video is smaller than 

that of the input. To minimize GPU memory, larger blocks are 

used instead of a large number of batches, reducing the number 

of batches to a single video. Therefore, 0.99 is currently 

determined to be in the optimal state, as seen in many training 

cases before. 

The energy of the method was obtained by using the relation 

between the soft-max and the cross-entropy loss at the pixel 

level in the final characteristic curve. The maximum software 

max is given by Eq. (12),  

P(𝑋𝑖,𝑗ϵo) = exp(𝑎𝑘(𝑥𝑖 , 𝑦𝑖)) /(∑ exp (𝑎𝑘(𝑥𝑖 , 𝑦𝑖))𝐾
𝑘=1 )  (12) 

where 𝑎𝑘(𝑥𝑖 , 𝑦𝑖)   𝑋𝑖,𝑗ϵ{w, o}  K  is the number of classes and 

P(𝑋𝑖,𝑗ϵo) is the prior probability of each pixel classification in 

the waterway navigation scene video. 

C. Bayesian Probability Optimization 

In this study, a Bayesian framework is pr oposed to classify 

pixels in a waterway navigation scene as either water surface, 

obstacle and sky. The framework is based on the pipeline shown 

in the abstract figure, where at each video frame, the probability 

map P(𝑋𝑖,𝑗ϵo|𝑌) is first updated for pixel type, and then used 

to update the segmentation of the waterway navigation scene 

video. 

To obtain 𝑃(𝑋𝑖,𝑗ϵo) for each pixel type(𝑥𝑖 , 𝑦𝑖), U-Net based 

segmentation and observation models are used. 𝑃(𝑋𝑖,𝑗ϵo) 

represents the probability map of observation in the Bayesian 

framework. The posterior map indicating whether each pixel 

belongs to the obstacle area is calculated using Eq. (13): 

𝑃(𝑋𝑖,𝑗𝜖𝑜|𝑌) ∝ 𝑃(𝑌|𝑋𝑖,𝑗𝜖𝑜) ∗ 𝑃(𝑋𝑖,𝑗ϵo)       (13) 

The first factor in Eq. (13) is the likelihood of observation, 

which can be directly computed using Eq. (11). The second 

factor is the prior probability density function, which is 

recursively updated as the previous posterior. 

U-Net is utilized for segmenting maritime scene in our work. 

Firstly, manual labeling training samples are produced and 

input into the U-Net based semantic segmentation model which 

is published in our previous work [35]. Then, the initial 

waterway navigation scene video segmentation based on U-Net 

and soft-max losses is obtained. Finally, the prior probability 

𝑃(𝑋𝑖,𝑗ϵo)  is expressed using the soft-max losses of the 

segmentation result.  

After obtaining the likelihood function and prior probability 

of each pixel in the waterway navigation scene video, the 

posterior probability of each pixel can be obtained using Eq. 

(13). Finally, waterway navigation scene segmentation is 

achieved by classifying the category of each pixel based on the 

obtained posterior probability. 

Fig. 4 (a) and (b) show priori probability maps generated by 

knowledge-based semantic segmentation in the two scenarios. 

The left side is the segmentation based on U-Net, the right side 

is the prior probability based on U-Net. 

IV. EXPERIMENTS AND DISCUSSION  

A. Waterway Scene Dataset 

Two public datasets, Marine Semantic Segmentation 

Training Dataset (MaSTr1325) [36] and Singapore Maritime 

Dataset (SMD) [37], are available to perform cross-validation 

on our knowledge-driven semantic segmentation method. 

MaSTr1325 is a large-scale marine semantic segmentation 

training dataset designed specifically for developing maritime 

obstacle detection algorithms. The dataset composes of 1325 

diverse videos and is collected by small coastal unmanned 

surface vehicles, covering a range of realistic conditions 

encountered in coastal surveillance tasks. All the images are 

semantically labeled on a per-pixel basis. The samples of SMD 

are acquired by cameras fixed on shore and moving vessels, 

respectively. 

The proposed method is trained by SMD and tested by 

MaSTr1325. To evaluate our method, four typical scenarios 

have been selected from MaSTr1325, as shown in Table I. 

Dynamic obstacles, e.g., fast-moving speedboats and waves, 

are involved in Scene 1. Scene 2 involves large-sized obstacles, 

e.g., close-up buoy. Floating debris are presented in Scene 3. 

obstacles of different scales and lighting conditions with 

different dynamic ranges in waterborne navigation scenes. 

Strong light and reflected light appear in Scene4, which could 

reduce seriously the performance of vision algorithms.  

 

 

 

 
  (a)                                               (b) 

Fig. 4.  U-Net based sematic segmentation. (a) segmentation image; 
(b) priori probability map 
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B. Segmentation Result 

In this section, LToF statistics are performed on Scene 1-4, 

and the results are shown in Fig. 5. The red represents the water 

surface while the blue represents the obstacle. At first, the 

threshold of the LToF detector can be calculated based on the 

parameters acquired by Gaussian fitting. It can be observed that 

the LToF thresholds are apparent in different waterways 

scenarios. 

According to the method presented in Section III, the 

likelihood probability, prior probability and posterior 

probability of the category of each pixel in the scenarios can be 

calculated. One image from Scene 1 and the corresponding 

probability maps are shown in Fig. 6. Finally, waterway scene 

sematic segmentation is achieved by the posterior probability 

map. 

The image sequence of the dataset is input to our framework. 

The LToF detector applies KLT to calculate the optical flow 

between the images. Subsequently, the threshold of the LToF is 

calculated as the likelihood probability of each pixel. 

 
        (a)                                                                                          (b) 

 
        (c)                                                                                          (d) 

Fig. 5.  LToF detection in Scene 1~4. (a) Scene 1; (b) Scene 2; (c) Scene 3; (d) Scene 4 

TABLE I  Waterway Scene Datasets  

Scene Description 

1 
dynamic obstacles, e.g., fast-moving 

speedboats and waves 

2 large-sized obstacles, e.g., close-up buoy 

3 small-sized obstacles, e.g., floating debris 

4 strong light and reflected light 
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Meanwhile, the priori probability map can be obtained by U-

Net. The posteriori probability map is calculated in a bayes 

framework, as the semantic segmentation results for the 

waterway navigation scene. U-Net and optical flow calculation 

are the main components of the proposed method in this work, 

and have been proven to be real-time. In the experiments, one 

PC with NVIDIA GeForce RTX 2080 Ti GPU is employed to 

train and evaluate the proposed method, which could process 

1920*1080 images at 17 frames per second. 

Among popular video semantic segmentation algorithms, 

DeepLab [10], DVSNet [38], FlowNet [39] have been selected 

for comparative analysis with our knowledge-driven semantic 

segmentation method. DeepLab is one of the typical semantic 

segmentation algorithms based on CNN and selected as a 

comparison. Atrous convolution is used to increase the 

receptive field, enabling better capture of contextual 

information in images without losing resolution. DVSNet is a 

semantic segmentation algorithm specialized for event based 

vision. Data is generated by using optical flow to detect motion 

events in dynamic scenes. FlowNet is a deep learning model 

that learns the differences between input images for optical flow 

estimation. Such a model enables better understanding on 

object structures and movements from video. 

The segmentation results of DVSNet, DeepLab, FlowNet 

and ours are shown in Fig. 7-9. Fig. 7-9 are the segmentation 

results of scenes 1, 3, 4, respectively. There are no typical 

obstacles in Scene 2, With sufficient training data, all four 

methods can achieve good semantic segmentation results. 

Therefore, it is not used for typical scene analysis. The results 

show that both the quantity and quality of the training set have 

a significant impact on the performance of DVSNet, DeepLab, 

and FlowNet2. In contrast, our semantic segmentation method 

based on knowledge region is more robust. 

Seven metrics are used to evaluate these segmentation 

methods, including accuracy, precision, recall, F1 score, 

Intersection over Union (IOU), mean IOU (mIOU), and 

frequency weighted IOU (fwIOU). IOU is used to measure the 

intersection of each predicted category with the ground truth, 

mIOU is calculated by the average IOUs of each category, and 

FWIOU is calculated as a weighted average according to the 

IOU of the pixel category. 

On this basis, the calculations of these evaluation metrics is 

as follows: 

TP: Correctly classified as water 

FP: Misclassified as water 

FN: Misclassified as obstacles 

TN: Correctly classified as an obstacle 

Accuracy=(TP+TN)/(TP+TN+FP+FN) 

  

(a)                                                                                             (b) 

 

  

(c)                                                                                             (d) 

Fig.6.  The original image (a) of waterway scene and the likelihood probability map (b), prior probability map (c) and the posterior probability 

map (d). 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

Precision=TP/(TP+FP) 

Recall=TP/(TP+FN)  

F1Score =(2*Precision*Recall)/(Precision+Recall) 

IOU= TP/(TP+FP+FN) 

mIOU=[TP/(TP+FP+FN)+TN/(TN+FN+FP)]/2 

fwIOU=(TP+FN)/(TP+FP+TN+FN)*(TP)/(TP+FP+FN) 

 

In Table II, we present the evaluation of all four methods 

using different performance metrics. After comparing the 

segmentation results of the four methods in Scene 1, it was 

found that the knowledge-driven semantic segmentation 

method for waterway navigation scenes achieved a higher 

accuracy in segmenting rapidly moving obstacles. This is 

because the other three methods are more sensitive to 

perceiving dynamic targets in the video, which can lead to 

mistaking water waves for dynamic obstacles. On the other 

hand, our method can accurately identify the short-lived feature 

points on the water surface, resulting in more precise semantic 

segmentation of water area pixels. Therefore, the knowledge-

driven semantic segmentation method is more suitable for 

waterway navigation scenes. 

In Table III, we present the evaluation of all four methods 

using different performance metrics. After comparing the 

segmentation results of four methods in Scene 3, we found that 

the knowledge-driven semantic segmentation method for 

Timestamp

Input video

Ours

FlowNet

DeepLab

DVSNet

5th second 10th second 15th second 20th second

Fig.7.  Segmentation Results of Scene 1 

TABLE II 
SEGMENTATION RESULTS OF SCENE 1 

method FlowNet DeepLab DVSNet Ours 

Accuracy(%) 78.42 82.87 83.92 94.11 

Precision(%) 69.70 74.63 72.42 87.10 

Recall(%) 71.97 69.37 78.27 81.12 

F1Score(%) 70.56 43.75 73.25 83.06 

IOU(%) 61.92 63.00 77.10 78.55 

mIOU(%) 60.52 54.82 62.31 75.58 

fwIOU(%) 72.40 75.63 81.83 89.56 
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waterway navigation scenes has a higher accuracy in 

segmenting small targets on the water surface, such as floating 

debris and buoys, while the other three methods have a higher 

rate of missed detection for small targets. This is because small 

targets are sparsely distributed in the training dataset, and these 

targets are static on the water surface, making it difficult for 

dynamic detection-based semantic segmentation algorithms to 

segment them. However, our method, which is based on LToF 

corner detection, can detect the corner points of small obstacles 

on the water surface, thus improving the accuracy of semantic 

segmentation for small targets. 

In Table IV, we present the evaluation of all four methods 

using different performance metrics. After comparing the 

segmentation results of four methods in Scene 4, we found that 

the knowledge-driven semantic segmentation method for 

waterborne scenes has a higher accuracy in segmenting the 

strong glare reflection. The other three methods are affected by 

the strong glare and tend to segment some areas with large 

differences in the sky as water areas. In contrast, our method 

can easily distinguish water surface feature points, resulting in 

higher accuracy in segmenting water and non-water areas. 

Timestamp

Input video

Ours

FlowNet

DeepLab

DVSNet

5th second 10th second 15th second 20th second

 
Fig.8.  Segmentation Results of Scene 3 

TABLE III 
SEGMENTATION RESULTS OF SCENE 3 

method FlowNet DeepLab DVSNet Ours 

Accuracy(%) 81.42 91.87 88.92 97.11 

Precision(%) 70.70 84.63 80.42 85.10 

Recall(%) 68.97 89.37 78.27 81.12 

F1Score(%) 57.56 63.75 63.25 73.06 

IOU(%) 69.63 78.00 64.10 87.55 

mIOU(%) 67.52 74.82 62.31 75.58 

fwIOU(%) 51.40 75.63 61.83 89.56 
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C. Stability Analysis 

The success of the knowledge-driven semantic segmentation 

method mainly relies on experiential knowledge and deep 

learning. It is discussed whether such knowledge-driven 

method is affected the quantity and quality of the employed 

dataset. Thus, two experiments are displayed in the following. 

In the first experiment, all samples of SMD and partial 

samples of MaSTr1325 are used as training set while the 

remaining samples of MaSTr1325 as testing set. U-Net 1~5 are 

achieved by training U-Net with 100%, 80%, 60%, 40%, 20% 

of the training samples. When U-Net 1~5 and our method are 

evaluated on the remaining samples of MaSTr1325, the 

percentages of misclassified pixels are shown in Fig. 10 (a). It 

can be seen that the performance of the U-Net based sematic 

segmentation algorithm gradually decreased as the number of 

the training samples from MaSTr1325 decreases. Due to the 

introduction of prior knowledge, our method could achieve 2.7% 

percent of misclassified pixels even though only 20% 

MaSTr1325 used in training set. 

 

TABLE IV 
SEGMENTATION RESULTS OF SCENE 4 

method FlowNet DeepLab DVSNet Ours 

Accuracy (%) 48.42 82.87 83.92 90.11 

Precision (%) 10.70 34.63 50.42 75.10 

Recall (%) 48.97 59.37 68.27 71.12 

F1Score (%) 17.56 43.75 63.25 73.06 

IOU (%) 9.63 28.00 34.10 57.55 

mIOU (%) 27.52 54.82 62.31 75.58 

fwIOU (%) 41.40 75.63 81.83 89.56 

 

Timestamp

Input video

Ours

FlowNet

DeepLab

DVSNet

5th second 10th second 15th second 20th second

 
Fig.9.  Segmentation Results of Scene 4 
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In the next, only the samples of SMD are used as training set 

while the samples of MaSTr1325 as testing set. The 

definitions of U-Net 1~5 remain consistent with the 

experiment above. The percentages of misclassified pixels u 

are shown in Fig. 10 (b), when U-Net 1~5 and our method are 

evaluated on MaSTr1325. It is found that the misclassified 

pixels of U-Net semantic segmentation are above 20% once 

that MaSTr1325 was completely absent from the training set. 

However, the misclassified pixels of our knowledge-driven 

semantic segmentation are stabilized below 10%. As a result, 

it can be proven that such a knowledge-driven semantic 

segmentation method is more robust in the absence of reliable 

data. 

V. CONCLUSION 

A novel knowledge-driven semantic segmentation method is 

presented for waterway scene perception. Using a Bayesian 

framework, the prior knowledge acquired by the LToF detector 

is fused with U-Net based semantic segmentation. The 

proposed method is evaluated on two public datasets SMD and 

MaSTr1325. 90% accuracy is achieved by the proposed method. 

Overall, such a knowledge-driven semantic segmentation 

method has a better performance in segmenting fast-moving 

and small objects on the water surface, and is not affected by 

lighting conditions. It is beneficial for waterway scene 

perception. In future work, it is of significance to explore the 

fusion of more prior knowledge and deep learning based 

semantic segmentation algorithms. 
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