7,561 research outputs found

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Smart Metering in Infrastructure-Less Communication Environments and Applicability of LoRa Technology

    Get PDF
    Advanced-Metering-Infrastructure (AMI) is an integral part of Smart-Grids (SGs). It enables accurate consumer billing in presence of dynamic pricing, and improves efficiency and reliability of electricity distribution in presence of distributed generation. Value-added features of AMI such as diagnostics and maintenance service can identify the anomalous power consumption patterns of appliances at the end of their life cycle. Water and gas utility distribution networks in smart cities will incorporate AMI as an application of Internet-of-Things (IoT). The communication infrastructure plays a crucial role in enabling two-way communication between Smart-Meters (SMs) and the utility. AMI’s bi-directional communication facility supports precise modeling of load information and data management system facilitating demand-response applications to reduce energy wastage. Researchers have investigated the role of wireless technologies in Home-Area-Networks (HANs), Neighborhood-Area-Networks (NANs) and Wide-Area-Networks (WANs) in AMI. The arrival of new Low-Power-Wide-Area-Networks (LPWANs) technologies has opened up new technology integration possibilities in AMI. However, it is essential to understand the AMI architecture, envisioned application types, network requirements, features and limitations of existing technologies to determine a technology’s integration suitability in an application for smart metering technology. This chapter discusses LoRa for smart metering in infrastructure-less environments and the possible use of our multi-hop routing scheme

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Unlocking the potential of the smart metering technology: How can regulation level the playing-field for new services in smart grids?

    Get PDF
    By integrating a communications system with the existing power grid, smart grids provide end-to-end connectivity. This enables all entities and components integrated in the electricity supply system to exchange information without knowing the network's structure. New services and applications such as demand response or virtual power plants that will aid to improve and optimize the use of electricity depend on the availability of a smart grid communication network. End-to-end communication networks require that the missing communications gap between consumers' premises and the remaining energy network is bridged by deploying an Advanced Metering Infrastructure (AMI). Given the current liberalized electricity markets' structure incumbent distribution system operators (DSOs) will control the AMI and the meter data. This gives rise to concerns about anti-competitiveness. We argue that leveraging the AMI in a social welfare maximizing way requires non-discriminatory access for all entitled parties to the (1) AMI and the (2) meter data through (3) interoperable standards. We discuss possible regulatory remedies to ensure a level playing-field for innovative services in smart grids and consider implications for research and regulation. --Regulation,Smart Grid,Smart Meter,Antitrust

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    corecore