392 research outputs found

    Application of seq2seq models on code correction

    Full text link
    We apply various seq2seq models on programming language correction tasks on Juliet Test Suite for C/C++ and Java of Software Assurance Reference Datasets (SARD), and achieve 75%(for C/C++) and 56%(for Java) repair rates on these tasks. We introduce Pyramid Encoder in these seq2seq models, which largely increases the computational efficiency and memory efficiency, while remain similar repair rate to their non-pyramid counterparts. We successfully carry out error type classification task on ITC benchmark examples (with only 685 code instances) using transfer learning with models pre-trained on Juliet Test Suite, pointing out a novel way of processing small programing language datasets.First author draf

    Application of seq2seq models on code correction

    Get PDF
    We apply various seq2seq models on programming language correction tasks on Juliet Test Suite for C/C++ and Java of Software Assurance Reference Datasets and achieve 75% (for C/C++) and 56% (for Java) repair rates on these tasks. We introduce pyramid encoder in these seq2seq models, which significantly increases the computational efficiency and memory efficiency, while achieving similar repair rate to their nonpyramid counterparts. We successfully carry out error type classification task on ITC benchmark examples (with only 685 code instances) using transfer learning with models pretrained on Juliet Test Suite, pointing out a novel way of processing small programming language datasets.Published versio

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks

    Full text link
    We present a demonstration of a neural interactive-predictive system for tackling multimodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translation, image and video captioning. These predictions are revised by a human agent, who introduces corrections in the form of characters. The system reacts to each correction, providing alternative hypotheses, compelling with the feedback provided by the user. The final objective is to reduce the human effort required during this correction process. This system is implemented following a client-server architecture. For accessing the system, we developed a website, which communicates with the neural model, hosted in a local server. From this website, the different tasks can be tackled following the interactive-predictive framework. We open-source all the code developed for building this system. The demonstration in hosted in http://casmacat.prhlt.upv.es/interactive-seq2seq.Comment: ACL 2019 - System demonstration
    corecore