4 research outputs found

    Nonlinear resonances of electrostatically actuated nano-beam

    Get PDF
    Nonlinear response of electrostatically actuated nano-beam near-half natural frequency is studied by considering the nonlinearities of the large deformation, electrostatic force and Casimir effect. A first-order fringe correction of the electrostatic force, large deformation, viscous damping, and Casimir effect are included in the dynamic model. The dynamics of the resonator are investigated by using the method of multiple scales in a direct approach to the problem. The sufficient conditions of guaranteeing the system stability and a saddle-node bifurcation are studied. The influences of large deformation, damping, actuation, and fringe effect on the resonator response are studied. The peak amplitude of the primary resonance is given in the paper. Numerical simulations are conducted for uniform nano-beam

    Stabilization of the Fractional-Order Chua Chaotic Circuit via the Caputo Derivative of a Single Input

    Get PDF
    A modified fractional-order Chua chaotic circuit is proposed in this paper, and the chaotic attractor is obtained for q=0.98. Based on the Mittag-Leffler function in two parameters and Gronwall’s Lemma, two control schemes are proposed to stabilize the modified fractional-order Chua chaotic system via the Caputo derivative of a single input. The numerical simulation shows the validity and feasibility of the control scheme

    Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    No full text
    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms

    Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Get PDF
    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms
    corecore