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A modified fractional-order Chua chaotic circuit is proposed in this paper, and the chaotic attractor is obtained for 𝑞 = 0.98.
Based on the Mittag-Leffler function in two parameters and Gronwall’s Lemma, two control schemes are proposed to stabilize the
modified fractional-order Chua chaotic system via the Caputo derivative of a single input. The numerical simulation shows the
validity and feasibility of the control scheme.

1. Introduction

Chaotic phenomena have been observed in many physical
systems, such as Chua’s circuit and its fractional-order model
[1, 2], the brushless DC motor [3], the microelectromechan-
ical system [4], and the fractional-order gyroscopes [5].
Sometimes, chaos is undesirable in the field of mechanical
engineering and power transmission, for example, in motor
system, in sensor system, and in power transmission system,
because the chaotic behavior can destroy the stable operation
of system. In fact, chaos control is usually a prerequisite
for many practical applications in chaos engineering, such
as permanent magnet synchronous motor [6], complex net-
works control [7], authenticated encryption [6], and chaos
communications [8]. So, chaos control is of great practical
significance and has received great interest due to its potential
application in many fields in the recent years. Up to now,
many control schemes have been proposed, likeOGY scheme
[9], OPF scheme [10], backstepping scheme [11], and so on
[12–14].

On the other hand, the stability of linear fractional-
order system can be easily proved by the method proposed
by Matignon [15]. However, this method can not be used
to deal with the nonlinear fractional-order system. Based
on Matignon’s method [15], the local stability result for

the nonlinear fractional-order system is proposed by Ahmed
et al. [16]. In Ahmed’s method [16], to evaluate the local
stability of the equilibrium points in nonlinear fractional-
order system, the nonlinear system is converted to a linear
system by linear approximation near the equilibrium point.
Now, many researchers always used the Ahmed method to
control the nonlinear fractional-order chaotic systems [17–
19]. But, it is known that the nonlinear problems of fractional-
order systems can not be straightforward changed to the
linear problems. So, this local stability [16] maybe needs to
be further studied.

Motivated by what is mentioned above, based on the
Mittag-Leffler function in two parameters and Gronwall’s
Lemma, a modified fractional-order Chua’s chaotic circuit
can be stable via a fractional-order scalar controller, which
can be determined by the Caputo fractional derivative of a
single input. Ahmed’s method [16] is not used in our paper.
The numerical simulations are given and show the feasibility
of the control scheme.

This paper is organized as follows. In Section 2, a mod-
ified fractional-order Chua’s chaotic circuit is reported, and
the chaotic attractor is given. In Section 3, two control
schemes are proposed to stabilize this fractional-order Chua’s
chaotic circuit, and the numerical simulations are given.
Conclusion is given in Section 4.
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Figure 1: The LLE of fractional-order Chua’s circuit (1) varies as
fractional-order 𝑞.

2. A Modified Fractional-Order Chua’s
Chaotic Circuit

Chua’s circuit [20] was the physical chaotic system discovered
by Chua et al. in 1986. Since then, Chua’s circuit has been
chosen as a classical paradigm in the research of chaos. Now,
some modified Chua’s circuits including their fractional-
order model have been reported by many researchers. In
2010, Muthuswamy and Chua [21] reported a simplest and
autonomous modified Chua’s chaotic circuit which includes
only three elements in series. Based on [21], amodifiedChua’s
circuit with fractional order is given in this paper, and its
mathematical model is shown as follows:
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where 𝑞 = 0.98 is the fractional order and 𝑐
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By numerical calculation [22], we can obtain that the

largest Lyapunov exponent (LLE) of fractional-order Chua’s
circuit (1) is larger than zero for 0.84 ≤ 𝑞 ≤ 1. Conversely,
for 0 < 𝑞 < 0.84, the LLE is smaller than zero. The LLE
of fractional-order Chua’s circuit (1) with respect to the
fractional-order 𝑞 is shown in Figure 1. For example, the LLE
is 0.1329 for 𝑞 = 0.98, and its chaotic attractor is shown as in
Figure 2. The LLE is 0.1356 for 𝑞 = 1.

According to what is mentioned above, the fractional-
order Chua’s circuit (1) is chaotic for 0.84 ≤ 𝑞 ≤ 1.

3. Stabilization of the Fractional-Order Chua’s
Chaotic Circuit (1)

In this section, how to stabilize the fractional-order Chua’s
chaotic circuit (1) will be discussed. First we report some
preliminary results.
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Figure 2: Chaotic attractor in the fractional-order Chua’s circuit (1)
for 𝑞 = 0.98.

Lemma 1 (see [23] Gronwall’s Lemma). Let 𝑎(𝑡), 𝑏(𝑡), and
𝑐(𝑡) be real-valued piecewise continuous functions, and let 𝑐(𝑡)
be nonnegative in a real time interval 𝑡 ∈ [𝑡

1
, 𝑡
2
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Lemma 2 (see [24] Wen et al., 2008). Consider a real matrix
𝐾 ∈ 𝑅

𝑛×𝑛, and let 𝜆
𝑖
(𝐾) (𝑖 = 1, 2, . . . , 𝑛) be its eigenvalues. If
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where 𝜌 > 0 be a constant, ‖𝐾‖ is the 𝑙
2
norm for 𝐾, and
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(𝑥
𝑛

/Γ(𝑞𝑛 + 𝑝)) (𝑞 > 0, 𝑝 > 0) is the Mittag-
Leffler function in two parameters (𝑝, 𝑞).

Now, we are in the position to state the main result of this
paper.
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Letting 𝛽 = 𝑞‖𝐾‖ be a constant, it is easy to obtain the
following:
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According to system (6), it is easy to obtain that

𝑔 (𝑥 (𝑡))
󵄨󵄨󵄨󵄨𝑥(𝑡)=0 = 0, (9)

󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩

‖𝑥 (𝑡)‖
≤
󵄨󵄨󵄨󵄨𝑥3 (𝑡)

󵄨󵄨󵄨󵄨
√
1 +

(1 + 𝑙
2

1
) 𝑥
2

3
(𝑡)

4
;

(10)

hence

lim
𝑥(𝑡)→0

󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩

‖𝑥 (𝑡)‖
= 0. (11)

According to (9)–(11), there exist a constant 𝜌 > 0 and
𝛿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩 < 𝜌
−1

‖𝑥 (𝑡)‖ (12)

for ‖𝑥(𝑡)‖ < 𝛿 and 𝑡 ≥ 0.

According to the controlled system (6), one can obtain the
eigenvalues of matrix𝐾 as follows:

𝜆
1
= −1.2, (13)

𝜆
±
= 0.5 (

1

2
−
𝑙
1

2
) ± 0.5√(

1

2
−
𝑙
1

2
)

2

− 2. (14)

Because 1 ≤ 𝑙
1
< 1 + 2√2, one has

󵄨󵄨󵄨󵄨arg 𝜆± (𝐾)
󵄨󵄨󵄨󵄨 >

𝜋

2
. (15)

According to (13)–(15), we have

󵄨󵄨󵄨󵄨arg 𝜆𝑖 (𝐾)
󵄨󵄨󵄨󵄨 >

𝜋𝑞

2
, (𝑖 = 1, 2, 3) , (16)

󵄨󵄨󵄨󵄨arg 𝜆𝑖 (𝑡
𝑞

𝐾)
󵄨󵄨󵄨󵄨 >

𝜋𝑞

2
, (𝑖 = 1, 2, 3) . (17)

Next, we study solution 𝑥(𝑡) in the fractional-order sys-
tem (6). Now, one can take Laplace transform 𝐿[⋅] on system
(6) and has

𝑠
𝑞

𝐿 [𝑥 (𝑡)] − 𝑠
𝑞−1

𝑥 (0) = 𝐾𝐿 [𝑥 (𝑡)] + 𝐿 [𝑔 (𝑥 (𝑡))] , (18)

where 𝑥(0) is the initial condition. So one has

𝐿 [𝑥 (𝑡)] =
𝑠
𝑞−1

𝑥 (0)

(𝑠𝑞 − 𝐾)
+
𝐿 [𝑔 (𝑥 (𝑡))]

(𝑠𝑞 − 𝐾)
. (19)

Meanwhile, one can take Laplace inverse transform for
(19) and obtain

𝑥 (𝑡) = 𝑀
𝑞,1
(𝐾𝑡
𝑞

) 𝑥 (0)

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝑞−1

𝑀
𝑞,𝑞
(𝐾 (𝑡 − 𝜏)

𝑞

) 𝑔 (𝑥 (𝜏)) 𝑑𝜏.

(20)

Give 𝛿
0
(0 < 𝛿

0
< 𝛿) arbitrarily small, and consider

solution 𝑥(𝑡) in system (6) with initial condition ‖𝑥(0)‖ < 𝛿
0
.

Using formulas (4), (8), (12), and (17), (20) gives

‖𝑥 (𝑡)‖

≤ 𝜌𝛿
0
[1 + 𝛽𝑞

−1

𝑡
𝑞

]
−1

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝑞−1

[1 + 𝛽𝑞
−1

(𝑡 − 𝜏)
𝑞

]
−1

‖𝑥 (𝜏)‖ 𝑑𝜏.

(21)

Using Lemma 1, inequality (21) can be changed as

‖𝑥 (𝑡)‖ ≤ 𝜌𝛿
0
[1 + 𝛽𝑞

−1

𝑡
𝑞

]
−1

+ ∫

𝑡

0

𝜌𝛿
0
(𝑡 − 𝜏)

𝑞−1

(1 + 𝛽𝑞
−1

𝜏
𝑞

)
−1

[1 + 𝛽𝑞−1 (𝑡 − 𝜏)
𝑞

]
1−𝛽
−1

𝑑𝜏.

(22)



4 Discrete Dynamics in Nature and Society

0 5 10 15 20

−2

−1

0

1

x
1
,x

2
,x

3

t

x1

x2

x3

Figure 3: Control results for fractional-order system (5).

Due to 𝑡 − 𝜏 ≥ 𝜏 in time interval 𝜏 ∈ [0, 𝑡/2] and 𝑡 − 𝜏 ≤ 𝜏
in time interval 𝜏 ∈ [𝑡/2, 𝑡], so
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By (23), inequality (22) can be changed as follows:
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based on inequality (24), one can obtain that 𝑥
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1, 2, 3) is a stable solution of the controlled system (5), which
allows concluding the proof.

For example, let the initial conditions be (𝑥
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(0)) = (1, 1, −2); the simulation result is shown as in

Figure 3 with 𝑙
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= 2.
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Figure 4: Control results for fractional-order system (25).
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where fractional-order 𝑞 = 0.98, let 𝑢(𝑥
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Now, we can complete the proof in a similar way with
Theorem 3.

For example, let the initial conditions be (𝑥
1
(0), 𝑥
2
(0),

𝑥
3
(0)) = (1, 1, −2); the simulation results are shown as in

Figure 4 with 𝑙
1
= −1.

4. Conclusions

Based on an autonomous 3D Chua’s chaotic circuit, a mod-
ified fractional-order Chua’s circuit system is proposed. By
numerical calculation, we obtain that the largest Lyapunov
exponent of the modified fractional-order Chua’s circuit
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system is larger than zero for 0.84 ≤ 𝑞 ≤ 1. This result
indicates that the modified fractional-order Chua’s circuit
system exhibits chaotic behavior if 0.84 ≤ 𝑞 ≤ 1. For example,
the largest Lyapunov exponent of the modified fractional-
order Chua’s circuit system is 0.1329 for 𝑞 = 0.98. The
chaotic attractor for 𝑞 = 0.98 is given. By using Laplace
transform, Gronwall’s Lemma, and Mittag-Leffler function
in two parameters, we proposed two control strategies to
stabilize the modified fractional-order Chua’s chaotic circuit.
In our control scheme, a scalar controller determined by a
single input and its Caputo derivative is used. The numerical
simulations show the proposed control strategies are valid.
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