2,150 research outputs found

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    Learning to See the Wood for the Trees: Deep Laser Localization in Urban and Natural Environments on a CPU

    Full text link
    Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs.Comment: Accepted for publication at RA-L/ICRA 2019. More info: https://ori.ox.ac.uk/esm-localizatio

    Laser-Based Detection and Tracking of Moving Obstacles to Improve Perception of Unmanned Ground Vehicles

    Get PDF
    El objetivo de esta tesis es desarrollar un sistema que mejore la etapa de percepción de vehículos terrestres no tripulados (UGVs) heterogéneos, consiguiendo con ello una navegación robusta en términos de seguridad y ahorro energético en diferentes entornos reales, tanto interiores como exteriores. La percepción debe tratar con obstáculos estáticos y dinámicos empleando sensores heterogéneos, tales como, odometría, sensor de distancia láser (LIDAR), unidad de medida inercial (IMU) y sistema de posicionamiento global (GPS), para obtener la información del entorno con la precisión más alta, permitiendo mejorar las etapas de planificación y evitación de obstáculos. Para conseguir este objetivo, se propone una etapa de mapeado de obstáculos dinámicos (DOMap) que contiene la información de los obstáculos estáticos y dinámicos. La propuesta se basa en una extensión del filtro de ocupación bayesiana (BOF) incluyendo velocidades no discretizadas. La detección de velocidades se obtiene con Flujo Óptico sobre una rejilla de medidas LIDAR discretizadas. Además, se gestionan las oclusiones entre obstáculos y se añade una etapa de seguimiento multi-hipótesis, mejorando la robustez de la propuesta (iDOMap). La propuesta ha sido probada en entornos simulados y reales con diferentes plataformas robóticas, incluyendo plataformas comerciales y la plataforma (PROPINA) desarrollada en esta tesis para mejorar la colaboración entre equipos de humanos y robots dentro del proyecto ABSYNTHE. Finalmente, se han propuesto métodos para calibrar la posición del LIDAR y mejorar la odometría con una IMU

    Radar-only ego-motion estimation in difficult settings via graph matching

    Full text link
    Radar detects stable, long-range objects under variable weather and lighting conditions, making it a reliable and versatile sensor well suited for ego-motion estimation. In this work, we propose a radar-only odometry pipeline that is highly robust to radar artifacts (e.g., speckle noise and false positives) and requires only one input parameter. We demonstrate its ability to adapt across diverse settings, from urban UK to off-road Iceland, achieving a scan matching accuracy of approximately 5.20 cm and 0.0929 deg when using GPS as ground truth (compared to visual odometry's 5.77 cm and 0.1032 deg). We present algorithms for keypoint extraction and data association, framing the latter as a graph matching optimization problem, and provide an in-depth system analysis.Comment: 6 content pages, 1 page of references, 5 figures, 4 tables, 2019 IEEE International Conference on Robotics and Automation (ICRA

    Toward mutual information based place recognition

    Full text link
    Abstract — This paper reports on a novel mutual information (MI) based algorithm for robust place recognition. The pro-posed method provides a principled framework for fusing the complementary information obtained from 3D lidar and camera imagery for recognizing places within an a priori map of a dynamic environment. The visual appearance of the locations in the map can be significantly different due to changing weather, lighting conditions and dynamical objects present in the environment. Various 3D/2D features are extracted from the textured point clouds (scans) and each scan is represented as a collection of these features. For two scans acquired from the same location, the high value of MI between the features present in the scans indicates that the scans are captured from the same location. We use a non-parametric entropy estimator to estimate the true MI from the sparse marginal and joint histograms of the features extracted from the scans. Experimental results using seasonal datasets collected over several years are used to validate the robustness of the proposed algorithm. I

    Lidar-based scene understanding for autonomous driving using deep learning

    Get PDF
    With over 1.35 million fatalities related to traffic accidents worldwide, autonomous driving was foreseen at the beginning of this century as a feasible solution to improve security in our roads. Nevertheless, it is meant to disrupt our transportation paradigm, allowing to reduce congestion, pollution, and costs, while increasing the accessibility, efficiency, and reliability of the transportation for both people and goods. Although some advances have gradually been transferred into commercial vehicles in the way of Advanced Driving Assistance Systems (ADAS) such as adaptive cruise control, blind spot detection or automatic parking, however, the technology is far from mature. A full understanding of the scene is actually needed so that allowing the vehicles to be aware of the surroundings, knowing the existing elements of the scene, as well as their motion, intentions and interactions. In this PhD dissertation, we explore new approaches for understanding driving scenes from 3D LiDAR point clouds by using Deep Learning methods. To this end, in Part I we analyze the scene from a static perspective using independent frames to detect the neighboring vehicles. Next, in Part II we develop new ways for understanding the dynamics of the scene. Finally, in Part III we apply all the developed methods to accomplish higher level challenges such as segmenting moving obstacles while obtaining their rigid motion vector over the ground. More specifically, in Chapter 2 we develop a 3D vehicle detection pipeline based on a multi-branch deep-learning architecture and propose a Front (FR-V) and a Bird’s Eye view (BE-V) as 2D representations of the 3D point cloud to serve as input for training our models. Later on, in Chapter 3 we apply and further test this method on two real uses-cases, for pre-filtering moving obstacles while creating maps to better localize ourselves on subsequent days, as well as for vehicle tracking. From the dynamic perspective, in Chapter 4 we learn from the 3D point cloud a novel dynamic feature that resembles optical flow from RGB images. For that, we develop a new approach to leverage RGB optical flow as pseudo ground truth for training purposes but allowing the use of only 3D LiDAR data at inference time. Additionally, in Chapter 5 we explore the benefits of combining classification and regression learning problems to face the optical flow estimation task in a joint coarse-and-fine manner. Lastly, in Chapter 6 we gather the previous methods and demonstrate that with these independent tasks we can guide the learning of higher challenging problems such as segmentation and motion estimation of moving vehicles from our own moving perspective.Con más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectivaAmb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva

    Deep Learning Localization for Self-driving Cars

    Get PDF
    Identifying the location of an autonomous car with the help of visual sensors can be a good alternative to traditional approaches like Global Positioning Systems (GPS) which are often inaccurate and absent due to insufficient network coverage. Recent research in deep learning has produced excellent results in different domains leading to the proposition of this thesis which uses deep learning to solve the problem of localization in smart cars with visual data. Deep Convolutional Neural Networks (CNNs) were used to train models on visual data corresponding to unique locations throughout a geographic location. In order to evaluate the performance of these models, multiple datasets were created from Google Street View as well as manually by driving a golf cart around the campus while collecting GPS tagged frames. The efficacy of the CNN models was also investigated across different weather/light conditions. Validation accuracies as high as 98% were obtained from some of these models, proving that this novel method has the potential to act as an alternative or aid to traditional GPS based localization methods for cars. The root mean square (RMS) precision of Google Maps is often between 2-10m. However, the precision required for the navigation of self-driving cars is between 2-10cm. Empirically, this precision has been achieved with the help of different error-correction systems on GPS feedback. The proposed method was able to achieve an approximate localization precision of 25 cm without the help of any external error correction system
    corecore