492 research outputs found

    3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

    Full text link
    We present a novel appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. Both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified, have been considered. The hand-object case is clearly the most challenging task having to deal with multiple tracks. The approach proposed here belongs to the class of partial pose estimation where the estimated pose in a frame is used for the initialization of the next one. The pose estimation is obtained by applying a modified version of the Iterative Closest Point (ICP) algorithm to synthetic models to obtain the rigid transformation that aligns each model with respect to the input data. The proposed framework uses a "pure" point cloud as provided by the Kinect sensor without any other information such as RGB values or normal vector components. For this reason, the proposed method can also be applied to data obtained from other types of depth sensor, or RGB-D camera

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Person Re-identification by Articulated Appearance Matching

    Full text link
    Abstract Re-identification of pedestrians in video-surveillance settings can be ef-fectively approached by treating each human figure as an articulated body, whose pose is estimated through the framework of Pictorial Structures (PS). In this way, we can focus selectively on similarities between the appearance of body parts to recognize a previously seen individual. In fact, this strategy resembles what humans employ to solve the same task in the absence of facial details or other reliable bio-metric information. Based on these insights, we show how to perform single image re-identification by matching signatures coming from articulated appearances, and how to strengthen this process in multi-shot re-identification by using Custom Picto-rial Structures (CPS) to produce improved body localizations and appearance signa-tures. Moreover, we provide a complete and detailed breakdown of the system that surrounds these core procedures, with several novel arrangements devised for effi-ciency and flexibility. Finally, we test our approach on several public benchmarks, obtaining convincing results.

    Exploiting High Level Scene Cues in Stereo Reconstruction

    Get PDF
    We present a novel approach to 3D reconstruction which is inspired by the human visual system. This system unifies standard appearance matching and triangulation techniques with higher level reasoning and scene understanding, in order to resolve ambiguities between different interpretations of the scene. The types of reasoning integrated in the approach includes recognising common configurations of surface normals and semantic edges (e.g. convex, concave and occlusion boundaries). We also recognise the coplanar, collinear and symmetric structures which are especially common in man made environments
    • …
    corecore